Baryon anomaly in heavy-ion collisions & colour correlations in QGP

E.M. Levin, Tel Aviv University, UTFSM Valparaiso
M.G. Ryskin, St. Petersburg LNPI, Durham University
Karel Šafařík, CERN, Geneva
G. Matulewicz, Ecole Polytechnique, Paris
Constituent (additive) quark model:

Experimental observation \[\frac{\sigma_{\pi p}}{\sigma_{pp}} \approx \frac{2}{3} \] value equal to the ratio of number of quarks in meson and baryon in naïve quark model!

Emerging picture: hardrons are made of loosely bounded (constituent) quarks

Baryon-to-meson ratio

If so, what would be the ratio of baryon to meson produced from a (symmetric) soup of quarks and antiquarks (e.g. at mid-rapidity of a hadron–hadron collision at infinite energy)? Starting from a quark:

$$q \begin{cases} q_{\frac{1}{2}}^{\frac{1}{2}} & \text{q}_4^{\frac{1}{4}} \rightarrow B \\ \bar{q}_{\frac{1}{2}}^{\frac{1}{2}} & \text{q}_4^{\frac{1}{4}} \rightarrow M \end{cases}$$

and starting from antiquark we obtain another $\frac{3}{4}$ of M and $\frac{1}{4}$ of \bar{B} thus:

$$B: \bar{B}: M = 1: 1: 6$$

It was assumed that the first (closest) combination of quarks is prepared in colour-singlet state

V.V. Anisovitch, V.M. Schekhter Nucl. Phys. B55 455 (1973)
Let’s assume that colour states of quarks are completely random, then:

only 1/9 of \(q\bar{q} \) pairs will bind into a meson
\[3 \otimes \bar{3} = 1 \oplus 8 \]

1/3 of qq pairs will became a di-quark
\[3 \otimes 3 = \bar{3} \oplus 6 \]

1/9 of diquark–q will bound into a baryon
\[3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10 \]

Summing all that up…
Colour de-correlation favours baryon production up to a factor 9/5 (=1.8)

This would be hardly applicable for hadron–hadron collisions because:
average number of steps needed to find correct colour partner(s) is
for a meson 9.99 (exactly 899/90)
for a baryon 13.5
consequently we would get very high inv. masses, e.g. ≈ 30 GeV
mesons for quarks with the mean distance in rapidity of Δy ≈ 0.5

 Proposed solution was:
soft gluon exchange to adjust colours with probability ∼ α_s^2 ≈ O(0.1)
to penalize each step by factor ∼ exp(-Δy) due to a quark (spin-½)
t-channel exchange

This brings baryon-to-meson ratio practically back to 1 : 6 value…

E.M. Levin, M.G. Ryskin, K. Safarik 1979, unpublished
B/M ratio at $p_T \approx 2–3$ GeV/c in central heavy-ion collisions is $\sim 2–3$ times higher than that in pp; at p_T above $\sim 7–10$ GeV/c back to the “normal” pp value.
Recombination – coalescence

Up to some (intermediate) $p_T [< O(10 \text{ GeV})]$ recombination will be favourable compared to fragmentation.

This is even more true for baryons.

Recombination explains the enhancement of baryons, i.e. baryon anomaly.

However, colour de-correlation can enhance baryons even further, in the region where it is dominant production process.

This is plausible for heavy-ion collisions, contrary to $h-h$, where in string fragmentation colours are naturally adjusted (i.e. correlated).

15 August 2012 Baryon anomaly & colour... K.Safarik
In previous study, when di-quark was created, we do not consider the possibility that the original quark can meet later another quark suited to be in di-quark combination and at the same time not to form a baryon di-quark was assumed to be a well-bounded state thus only the first di-quark combination was kept and should eventually end up in a baryon

For the recombination from QGP we search for the “closest” colour singlet combination to coalesce, thus we keep track of more than one di-quarks

This assumption favour baryons even more baryon-to-meson ratio become

\[B: \bar{B}: M = 29: 29: 82 \]

compared to

\[B: \bar{B}: M = 3: 3: 10 \]

or

\[B: \bar{B}: M = 1: 1: 6 \]

The relative increase of probability for baryons between the two extreme scenaria (“always adapted colours” and “completely random colours”) is

\[\frac{87}{41} \approx 2.122 \]

G.Matulewicz, K.Safarik 2012, unpublished
In our simple model at each step, when comes a quark with an unsuitable colour, we consider with some probability p_g (so called “gluon probability”) that the colour is adjusted to the suitable one, by some sort of soft gluon emission.

Thus for $p_g = 0$ and $p_g = 1$ the two extreme cases are recovered.

In order to calculate the final baryon-to-meson ratio we assign to quarks flavour (s quark being suppressed by factor 0.3)

Hadrons from lowest ($l = 0$) multiplets are constructed with weights according the number of spin states, and decayed

2-d model assuming thermal distribution for quark p_T is under construction, utilizing for quark ordering inv. mass

![Graph showing the baryon/meson ratio as a function of gluon probability](image-url)
Colour correlations among nearby quarks and antiquarks in QGP can alter the baryon-to-meson ratio, resulting from their recombination, by a factor:

~ 2 (for directly produced particles)
~ 3 (taking into account decays)

Random distribution of colours in QGP favour baryon production
Contrary, when colours are adjusted to form white state with a neighbour, the baryon-to-meson ratio is lowered

Simple model is being prepared to calculate the p_T-dependence of baryon-to-meson ratio (and of different particle species) taking into account assumptions about degree of colour correlations in QGP