D meson nuclear modification factors in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV measured with the ALICE detector

Alessandro Grelli

on behalf of the ALICE collaboration

Universiteit Utrecht
Disagreement STAR-PHENIX factor 2 in cross section measurement. Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non-photonic electrons. High suppression of charm, at the level of light quark. Predictions contradicted!
Heavy quarks produced at the early stage of the collision (large mass requires high Q^2)

Heavy quarks are expected to lose less energy than light quarks and gluons due to color-charge and dead cone effect \rightarrow higher penetrating power into QCD medium.

What about charm strange hadrons (D_s)? If in-medium hadronization dominant mechanism of charm hadron formation at low p_T \rightarrow strange charm hadrons largely enhanced.

$E_{\text{loss}}(\text{light}) > E_{\text{loss}}(D) > E_{\text{loss}}(B)$

\rightarrow Allow testing of pQCD models of quark energy loss.
\rightarrow Good probes of the QCD medium.
Data sample

OR between central and minimum bias trigger, based on ITS pixel and VZERO scintillators.

Centrality
- Determined via geometrical Glauber model fit of the VZERO amplitude.

<table>
<thead>
<tr>
<th>System</th>
<th>c.m.s energy (TeV)</th>
<th>events analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>7</td>
<td>~3.16×10^8</td>
</tr>
<tr>
<td>pp</td>
<td>2.76</td>
<td>~6.8×10^7</td>
</tr>
<tr>
<td>Pb-Pb</td>
<td>2.76</td>
<td>~3.0×10^6 (0-20%)</td>
</tr>
<tr>
<td>Pb-Pb</td>
<td>2.76</td>
<td>~1.6×10^7 (0-7.5%)</td>
</tr>
</tbody>
</table>
D mesons via hadronic decays

- Fully reconstructed D mesons in hadronic decay channels.

- In this talk:
 \[D^0 \rightarrow K^- \pi^+ \]
 \[D^+ \rightarrow K^- \pi^+ \pi^+ \]
 \[D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+ \]
 \[D^+_s \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+ \]

- Additional information on \(D^+_s \) and \(D^+ \) in:
 - \(D^+_s \) talk by Gian Michele Innocenti
 - \(D^+ \) poster by Riccardo Russo
D meson reconstruction

- Topology of the decay resolved via the reconstruction of the secondary vertex.
- Combinatorial background reduced via topological selections.
- PID using TOF and TPC to further suppress background.
- Invariant mass analysis.

\[D^0 \rightarrow K^- \pi^+ \]

Impact parameters \(\sim 100 \mu m\)

Similar strategy for all D mesons both in pp and Pb-Pb collisions.
D meson cross sections in pp at $\sqrt{s} = 7$ TeV

- D^0, D^+ and D^{*+} cross section at $\sqrt{s}=7$ TeV, $|y|<0.5$

- Large p_T coverage [1,24] GeV/c and well described by pQCD predictions.

Scaling to 2.76 TeV and extrapolation to high p_T

- pp reference defined by scaling the 7 TeV measurement to 2.76 TeV
 - FONLL predictions at 7 and 2.76 TeV used for the scaling
 - Scaling uncertainty from $\sim 50\%$ ($p_T=1$ GeV/c) to $\sim 5\%$ (high p_T)
- Direct measurement with short run at 2.76 TeV to validate the reference.

Data at 2.76 TeV

Scaling from 7 TeV

Data/scaled

At high p_T (>16 GeV/c for D^0 and >24 GeV/c for D^{*+} and D^+) reference extrapolated using the ratio data/theory (\rightarrow rely on FONLL p_T shape)
Scaling to 2.76 TeV and extrapolation to high p_T

- pp reference defined by scaling the 7 TeV measurement to 2.76 TeV
 - FONLL predictions at 7 and 2.76 TeV used for the scaling
 - Scaling uncertainty from ~50% ($p_T=1\text{GeV}/c$) to ~5% (high p_T)
- Direct measurement with short run at 2.76 TeV to validate the reference.

At high p_T (>16 GeV/c for D^0 and >24 GeV/c for D^{*+} and D^+) reference extrapolated using the ratio data/theory (\rightarrowrely on FONLL p_T shape).
What about RHIC results

Disagreement STAR-PHENIX

factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark.

Predictions contradicted.

D mesons in Pb-Pb
In 2010 the first measurement of D^0, D^+ and D^{*+} meson R_{AA} using $\sim 3 \times 10^6$ events. Similar suppression for all the meson species.

$R_{AA}(p_T)$ shows a tendency to increase at low p_T in the 20% most central class.

Large suppression in the 10% most central class.
D⁰, D⁺ and D*⁺ invariant mass in 2011 data 0-7.5%

- ~16×10⁶ Pb-Pb events in the centrality class 0-7.5%
- Significance > 30 (D⁰) and >11 (D*⁺ and D⁺)

```
 What about RHIC results
 Disagreement STAR-PHENIX
 factor 2 in cross section measurement.
 Data in agreement with binary scaling - negligible initial state
 nuclear effects.
 Charm with non photonic electrons.
 High suppression of charm, at the level of light quark.
 Predictions contradicted !.
```
D meson signal in p_T bins (0-7.5%)

D mesons cover a p_T range from 1 to 36 GeV/c with 10 p_T bins.

Note: here as example the first 8 bins D0 and last 2 bins D*$^+$.

[Graphs showing data on D meson signal in different p_T bins with invariant mass distributions.]
Invarian mass analysis in the p_T range [4,12] GeV/c, centrality class 0-7.5%

PID selection ensures large background reduction to the presence of two kaons in the final state.
D mesons efficiencies

Corrections from MC

- HIJING+Pythia (D meson enriched)
- Full description of detector status
- Detailed analysis of the systematic error sources (MC p_T shape, PID, cut variation and yield extraction, particle-antiparticle)

Efficiencies up to 20% at high p_T.
Subtraction of secondary D from B needed to compute prompt D-meson R_{AA}

✓ Rely on FONLL predictions as done for D meson cross section in pp at $\sqrt{s}=7$ TeV and 2.76 TeV

✓ Hypothesis on R_{AA} of D from B mesons

$$N_{\text{theory, uncorrected}}^{D \text{ from } B} = \Delta p_t \times \epsilon_{D \text{ from } B} \times \frac{dN_{\text{theory}}^{D \text{ from } B}}{dp_t}$$

$$\frac{dN_{\text{D from B}}^{D \text{ from B}}}{dp_t} = R_{AA}^D \times T_{AA} \times \frac{d\sigma_{pp, \text{theory}}^{D \text{ from B}}}{dp_t}$$

$R_{AA}^{\text{D from B}}/R_{AA}^{\text{prompt D}}$ ranges from 0.3 to 3.0

✓ Data driven method in development:

fit the impact parameter of D to measure the prompt charm fraction
D meson dN/dp_T in pp and Pb-Pb (0-7.5%)

- **pp data** from $\sqrt{s}=7$ TeV scaled to 2.76 TeV and multiplied by $<T_{AA}>$.

- **Pb-Pb data** show large suppression at high p_T.

17/8/2012

Alessandro Grelli - QM2012
D meson nuclear modification factor

\[R_{AA}^D(p_T) = \frac{dN_{AA}^D / dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp}^D / dp_T} \]

- **D**\(^0\), **D**\(^+\) and **D**\(*^+\) **R**\(_{AA}\) measured in the range \([1,36]\) GeV/\(c\) with 2011 data. Compatible within uncertainties.
- Suppression up to a factor 5 for **D**\(^0\), **D**\(^+\) and **D**\(*^+\) at \(p_T\sim10\) GeV/\(c\).
- First measurement of **D**\(_s^+\) **R**\(_{AA}\), data not conclusive on comparison with other mesons.

- **D**\(^0\), **D**\(^+\) and **D**\(*^+\) **R**\(_{AA}\) measured in the range \([1,36]\) GeV/\(c\) with 2011 data. Compatible within uncertainties.
- Suppression up to a factor 5 for **D**\(^0\), **D**\(^+\) and **D**\(*^+\) at \(p_T\sim10\) GeV/\(c\).
- First measurement of **D**\(_s^+\) **R**\(_{AA}\), data not conclusive on comparison with other mesons.
What about RHIC results
Disagreement STAR-PHENIX
factor 2 in cross section
Data in agreement with binary scaling - negligible initial state nuclear effects.
Charm with non photonic electrons.
High suppression of charm, at the level of light quark.
Predictions contradicted!

Comparison of the 2010 and 2011 results. Hint of a larger suppression going to more central events, but compatible within uncertainties.

At low p_T indication of a $R_{AA}<1$

At high p_T data are consistent both with a rising and flat shape

pPb run beginning of 2013 to study the shadowing effect.
Comparison with models

Radiative energy loss supplemented with in-medium D meson dissociation and radiative plus collisional energy loss in the WHDG and BDMPS-ASW implementations describe reasonably well our average R_{AA}.

![Graph showing comparison with models](image)

References

Conclusions

- D meson R_{AA} measured in 0-7.5% centrality with 2011 data sample. p_T reach extended with respect to the 2010 analysis. Now [1,36] GeV/c Large suppression, factor of 5 at about $p_T = 10$ GeV/c for D^0, D^+ and D^{*+}

- First measurement of $D^{+s} R_{AA}$: intriguing result, in view of future LHC Pb-Pb runs.
 - D^{+s} talk by Gian Michele Innocenti
 - Upgrade of ALICE: talk by Roy Lemmon

- Comparison of the average D^0, D^{*+} and $D^+ R_{AA}$ with 2011 and 2010 data shows a hint of larger suppression for $p_T > 5$ GeV/c with 2011 data consistent with the change in centrality from 0-20% to 0-7.5%
Backup

What about RHIC results

Disagreement STAR-PHENIX

factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark.

Predictions contradicted!
Proton-proton D mesons ratio and Γ_{s}

What about RHIC results

Disagreement STAR-PHENIX factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark.

Predictions contradicted!

Ratio of D mesons versus pt. FONLL, GM-VFNS and Pythia are also shown

Strangeness suppression factor as measured by ALICE and compared with other experiments.

arXiv:1208.1948

a.grelli@uu.nl
What about RHIC results

Disagreement STAR-PHENIX

factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non-photonic electrons.

High suppression of charm, at the level of light quark.

Predictions contradicted!

D^+_s cross section in pp at \sqrt{s} = 7\,\text{TeV} in the p_T range [2, 12]\,\text{GeV/c}.

Well described by pQCD prediction.

D$^+$ mass plots

What about RHIC results

Disagreement STAR-PHENIX

factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark.

Predictions contradicted!

EPS2009 - Krakow

Alessandro Grelli

03/12/09 - Pavia

Alessandro Grelli

a.grelli@uu.nl
D^{*+} mass plots

What about RHIC results

Disagreement STAR-PHENIX

factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark.

Predictions contradicted.

EPS2009 - Krakow

Alessandro Grelli

03/12/09 - Pavia

Alessandro Grelli

a.grelli@uu.nl
Systematic errors

\(\sqrt{s_{NN}} = 2.76 \text{ TeV}, 16 \times 10^6 \text{ events} \)

Centrality 0-7.5 %

\(D^+ \rightarrow K^+ \pi^+ \pi^- \)

\(D^+_s \)

Relative Error

\(\Delta p_T (\text{GeV/c}) \)

Total (excl. norm.)

Normalization (4.8%)

Tracking efficiency

Branching ratio

Yield extraction

Cuts efficiency

PID efficiency

MC \(p_T \) shape

26/07/2012

ALICÉ PERFÉ 32463

a.grelli@uu.nl
What about RHIC results

Disagreement STAR-PHENIX
factor 2 in cross section
Data in agreement with binary scaling - negligible initial state nuclear effects.
Charm with non photonic electrons.

High suppression of charm, at the level of light quark.

Predictions contradicted!

EPS2009 - Krakow
Alessandro Grelli

03/12/09 - Pavia
Alessandro Grelli

R_{AA} of D^0, D^+, D^{*+} and D^{+}_{s}