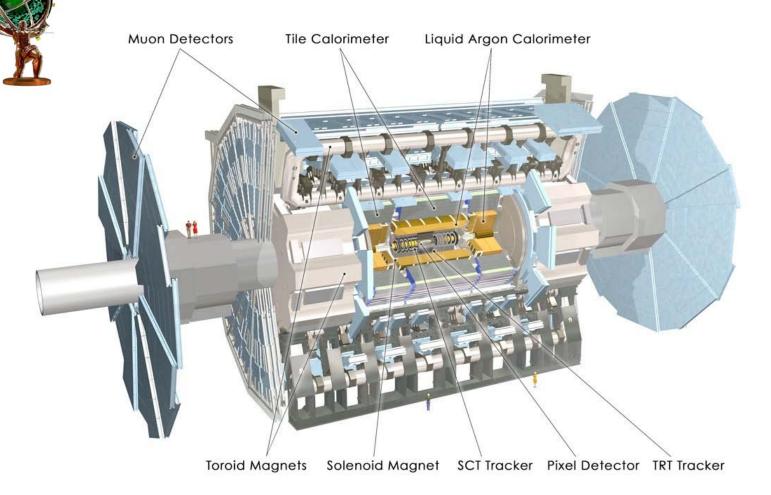
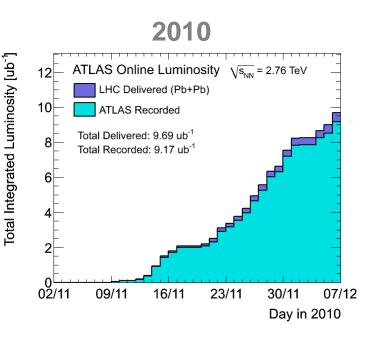


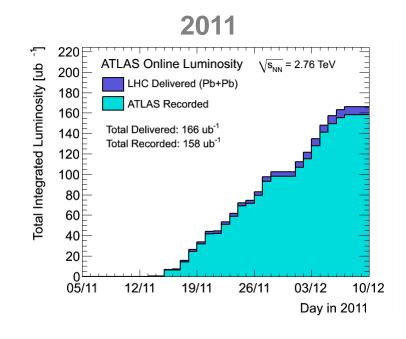
Recent results for Pb-Pb collisions with the ATLAS detector


Barbara Wosiek, for the ATLAS Collaboration Institute of Nuclear Physics PAS, Kraków, Poland

Outline

- ATLAS detector
- Lead-lead data taking
- Collective flow
- Electroweak probes
- Medium-sensitive probes
 - Heavy quark production
 - Jet suppression
 - Jet fragmentation
 - Path length dependence of jet suppression
 - Jet v2
 - $-\gamma$,Z jet correlations
- Summary


The ATLAS detector



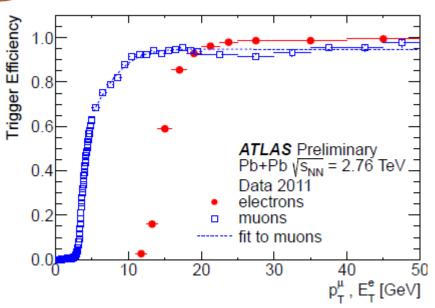
Three main subsystems with a full coverage in azimuth:

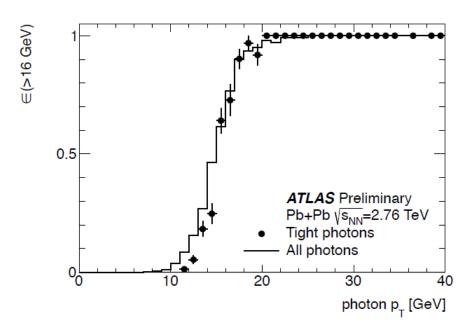
- Inner Detector tracking $|\eta|$ <2.5
- Calorimetry $|\eta|$ <4.9
- Muon Spectrometer |η|<2.7

Lead-lead data taking

L_{int}
Detector eff.
Triggers
Events[×10⁶]

8 μb⁻¹ > 97% MB ~50


MB – Minimum Bias

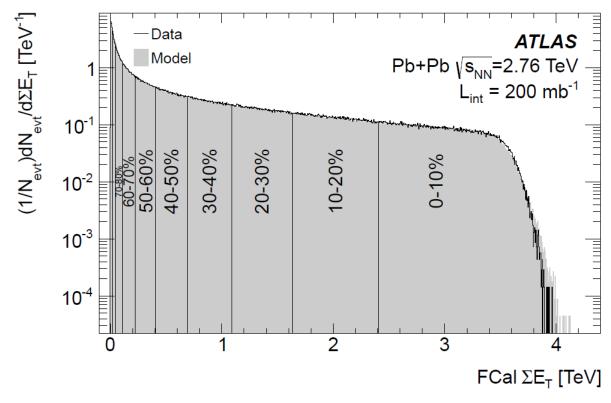

0.15 nb⁻¹ > 97% MB, e, μ , γ , jets, UPC ~1000

Thanks LHC!

Triggers in 2011

Electrons and photons

- based on EM calorimeter
- efficiency > 98% for E_T > 20 GeV


<u>Muons</u>

Based on combination: L1 and HLT with $p_T>4$ GeV based on Rol OR full scan with $p_T>10$ GeV

Efficiency > 90% above 10 GeV

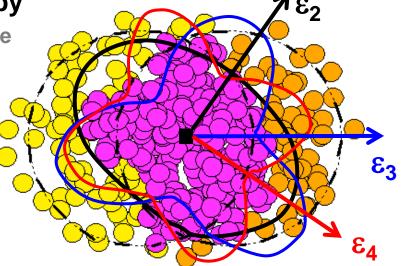
Lead-lead collision centrality

- Energy sum in forward calorimeter (FCal) Σ E_T (3.2 |η|<4.9) compared with Glauber MC ⊗ 2.76 TeV pp data
- Sampling fraction $f = 98 \pm 2\%$ of total inelastic cross-section
- Centrality parameters $< N_{part} >$, $< N_{coll} >$ calculated from Glauber MC (binning in the simulated FCal ΣE_T)

Collective flow measurements

 Spatial deformations in the initial overlap region are transformed into the final state momentum anisotropy

- studied via Fourier decomposition of the azimuthal angle distribution measured relative to the initial symmetry plane Φ_n A.M. Poskanzer, S. A. Voloshin, Phys. Rev. C58, 1671 (1998) :

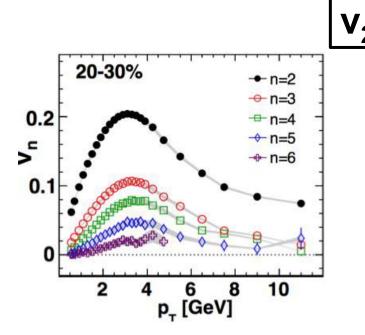

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi p_{T}} \frac{E}{p} \frac{d^{2}N}{dp_{T}d\eta} \left(1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T}, \eta) cos[n(\phi - \Phi_{n})]\right)$$

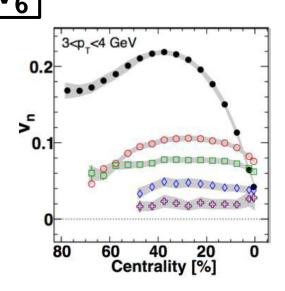
with two-particle correlations (2PC)

$$\frac{dN_{\text{pairs}}}{d(\phi_{\text{a}} - \phi_{\text{b}})} \propto 1 + 2\sum_{\text{n=1}}^{\infty} V_{\text{n,n}}(p_{\text{T}}^{\text{a}}, p_{\text{T}}^{\text{b}}) \cos[n(\phi_{\text{a}} - \phi_{\text{b}})]$$

- with 2- and 4-particle cumulants

N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C64, 054901(2001)





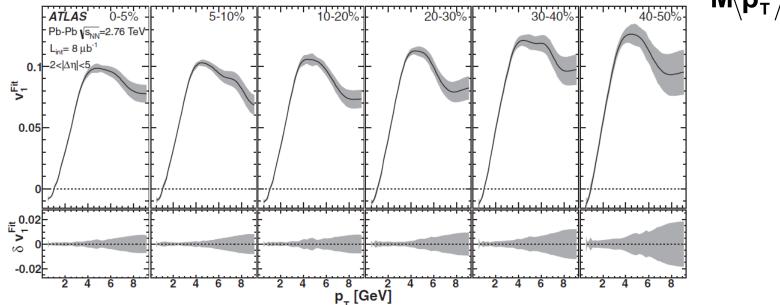
Measurement of Fourier coefficients

Phys. Rev. C86 (2012)014907

- Similar p_⊤ dependence for n=2-6 flow harmonics
- Weak centrality dependence observed for v₃-v₆
- For the 5% most central events $v_3 > v_2$

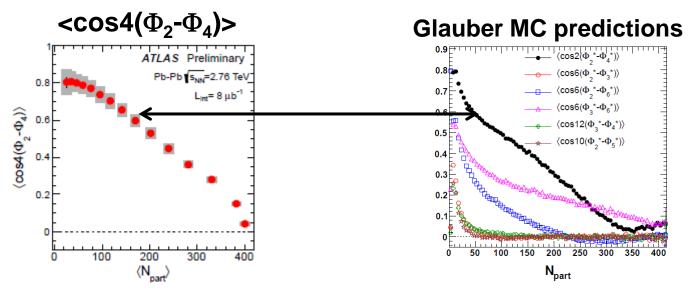
Significant v_n (n>2)

>Fluctuations of the nucleon positions in the overlap region



First order flow harmonic

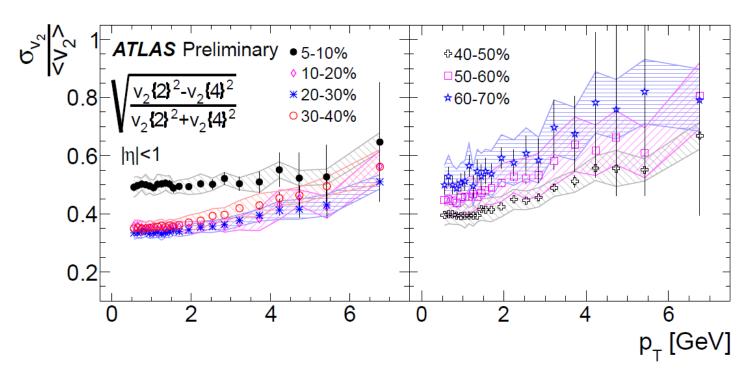
Phys. Rev. C86 (2012)014907


 $v_{1,1}$ from the 2PC v_1 from the two-component fit: $v_{1,1}(p_T^a,p_T^b) \approx v_1(p_T^a)v_1(p_T^b) - \frac{p_T^ap_T^b}{M\langle p_T^2\rangle}$

- v_1 signal is negative at $p_T < \sim 1$ GeV, reaches a maximum at around 4–5 GeV and decreases at higher p_T
- The magnitude of v₁ at peak is comparable to that of v₃
- v₁ signal arises from the dipole asymmetry of the nuclear overlap due to <u>fluctuations in the initial geometry</u>

Fluctuations in the initial geometry

The resolution corrected correlations between EP of different orders: (Φ_n, Φ_m) , (Φ_n, Φ_m, Φ_k) ATLAS-CONF-2012-049


- Some correlations show trends qualitatively, but not quantitatively, similar to Glauber model, others differ significantly
- Observed correlations can be partially attributed to the fluctuations in the initial geometry, but may also arise during the dynamical evolution of the created system

Elliptic flow fluctuations

• Extracted from 2- and 4-particle cumulants

$$\frac{\sigma_2}{\langle v_2 \rangle} \approx \sqrt{\frac{v_2 \{2\}^2 - v_2 \{4\}^2}{v_2 \{2\}^2 + v_2 \{4\}^2}}$$

- weak p_T dependence for p_T < 2 GeV across all centralities;
- in 5-10% central p_T-independence holds up to higher p_T


ATLAS-CONF-2012-118

Flow harmonics fluctuations

New technique – direct measurement of flow fluctuations!

Event-by-event unfolded v_n distributions, for n=2-4

- Raw v_n distributions are unfolded with response functions accounting for v_n smearing
- Response functions are obtained from correlations between two symmetric subevents

- v_n distributions are 2D Gaussian (curves):
 - for v₂ only in the 1% of most central collisions

initial state for v₃ and v₄ over all centralities

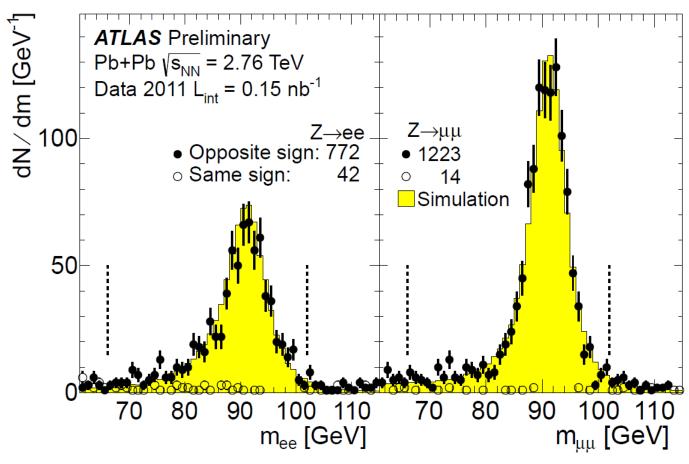
More details on EbE v_n studies in talk by Jiangyong Jia, 4A Thursday

resulting from random

fluctuations in the

ATLAS results on collective flow studies at Quark Matter 2012:

- ✓ Provide information on the initial geometry and its fluctuations
- ✓ Provide constraints on the hydrodynamic evolution of the system
 - Adam Trzupek, Flow & Correlations, plenary Today
 - Dominik Derendarz, Measurement of elliptic and higher-order harmonics at sqrt(s_NN)=2.76TeV Pb-Pb collisions with the ATLAS detector, parallel 2A Tuesday
 - Jiangyong Jia, Measurement of dipolar flow and event-by-event harmonic flow distributions in Pb-Pb collisions at sqrt(s_NN) =2.76 TeV, parallel 4A Thursday
 - Tomasz Bold, Measurements of flow harmonics with the cumulant method and the integrated v₂ with low-p_T threshold from the ATLAS experiment, parallel 6D Friday
 - Soumya Mohapatra, Measurement of event plane correlations in Pb-Pb collisions with the ATLAS detector, parallel 7D Friday


Electroweak probes

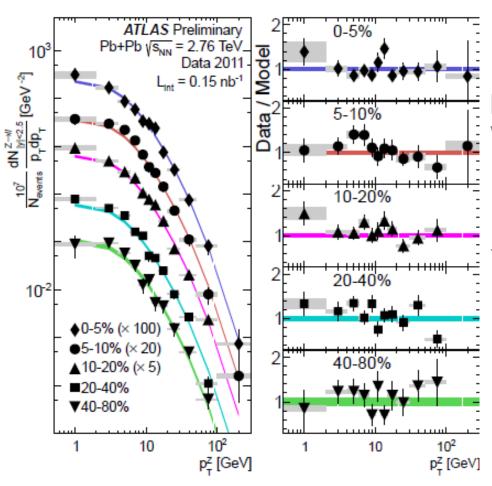
Z⁰ and W[±] bosons and photons are not strongly interacting with the medium constituents: should obey QCD factorization (scaling with N_{coll})

- Measurements of $Z/W/\gamma$ production in Pb+Pb provide constraints on the nuclear PDF
- $Z/W/\gamma$ bosons can be used as a reference
- Production of Z/W/ γ in association with jets provides a handle for understanding the parton energy loss in medium

Measurement of $Z\rightarrow e^+e^-, \mu^+\mu^-$

Electron selection

- E_T > 20 GeV
- |η|<2.5
- Shower shape and energy cuts
- Subtraction of the UE energy

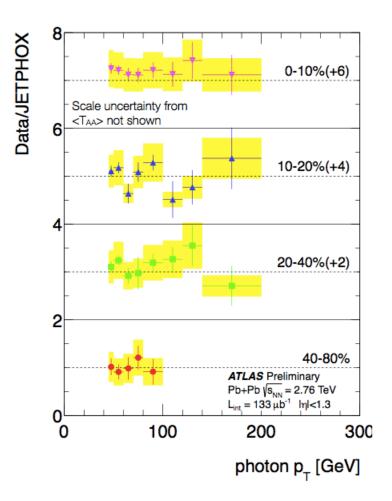

Muon selection:

- p_T > 10 GeV
- |η|<2.7
- track quality cuts

p_T distributions of Z bosons

$Z\rightarrow e^+e^-$ and $Z\rightarrow \mu^+\mu^-$


Centrality dependence


 p_T (and y) distributions consistent with Pythia simulations for pp with NNLO cross section $\times <T_{\Delta\Delta}>$

Yields consistent with N_{coll} scaling

Prompt photon production

Yields scaled by T_{AA} and compared to **JETPHOX** predictions

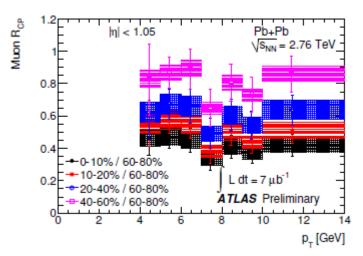
Ratio: Data/JETPHOX ≈ 1 (~R_{AA})

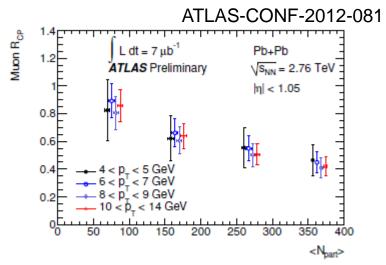
Electroweak probes: Summary

- Z, γ yields scale with N_{coll}
 - No significant violation of QCD factorization
- Using N_{coll} as a normalization of AA spectra is justified

Analysis details and more results in the electroweak sector in talks by :

- Peter Steinberg plenary Thursday
- Zvi Citron parallel 1B Tuesday
- Iwona Grabowska-Bold parallel 4C Wednesday
- Jiri Dolejsi parallel 4C Wednesday

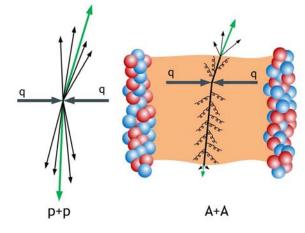

Medium-sensitive probes


- Heavy quark production
- Jet studies

Open heavy flavour production

- Studied via semileptonic decays to muons
 - $4 < p_T < 14 \text{ GeV}, |\eta| < 1.05$

- A factor of 2 suppression 0-10%/60-80%, independent of p_T
- Weaker suppression than for charged hadrons
- Weaker suppression as compared to RHIC electron results


Talk by **Dennis Perepelitsa** parallel 7A friday

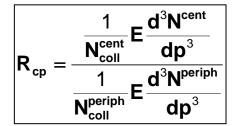
Jet studies

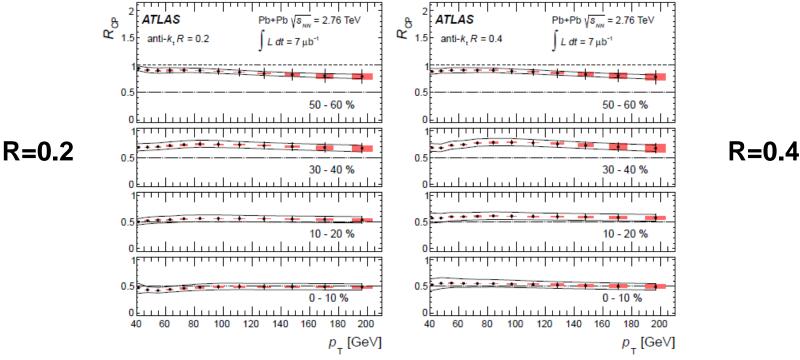
Jet quenching: jet energy loss in hot/dense medium

(J.D. Bjorken - 1982)

- Suppression of the jet yields
- Modification of the fragmentation function
 - Much more advanced analyses
 - Fully unfolded jet p_T spectra
 - Dependence on the jet size
 - Full control of systematic uncertainties
- Dependence on the path length
- \rightarrow Jet v_2
- γ,Z jet correlations

Preliminary results shown at QM'2011

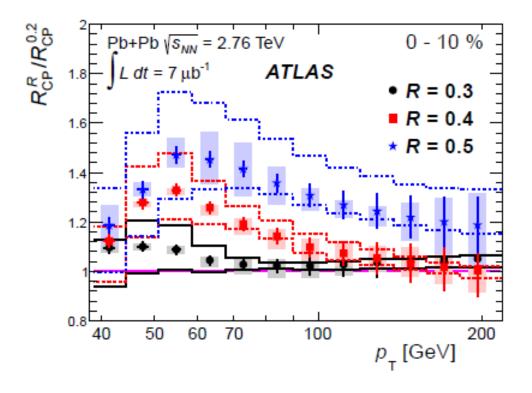

New results


Jet suppression

arXiv:1208.1967 [hep-ex] Submitted to Phys. Lett.B

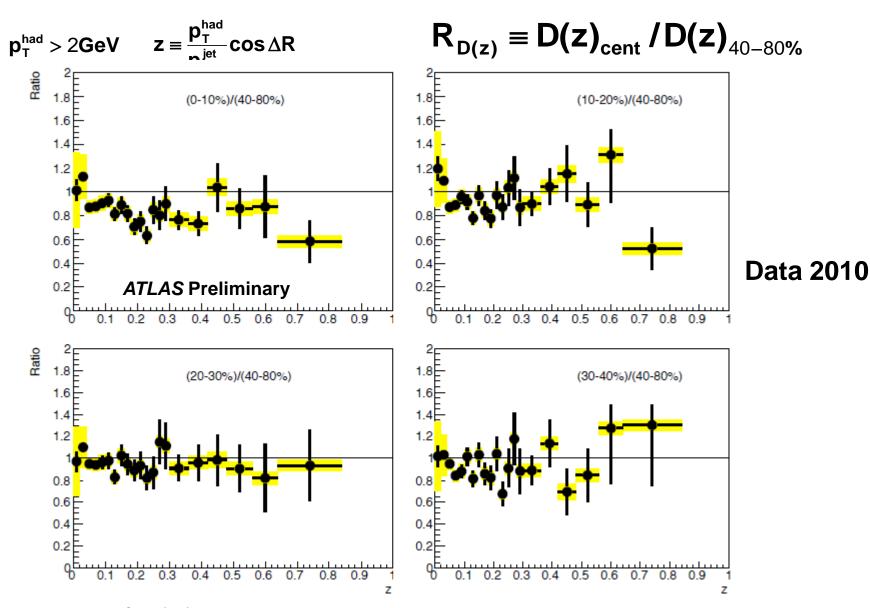
First LHC result on jet suppression Unfolded p_T spectra For jet sizes R=0.2, 0.3, 0.4 and 0.5

peripheral reference: 60-80%

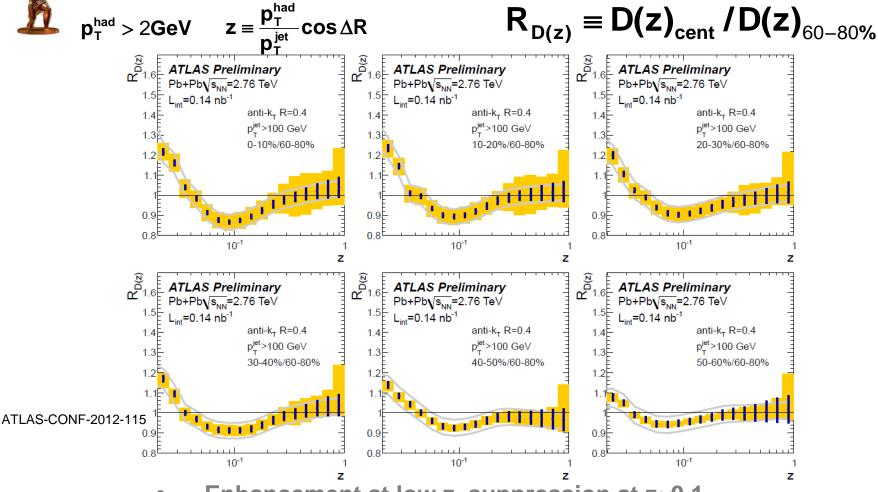

- A factor of ~2 suppression in 0-10% most central collisions
- Suppression independent of jet p_T

R-dependence of jet suppression

arXiv:1208.1967 [hep-ex] Submitted to Phys. Lett.B


Ratio of R_{CP} values between R=0.3, 0.4 and 0.5 jets and R=0.2 jets

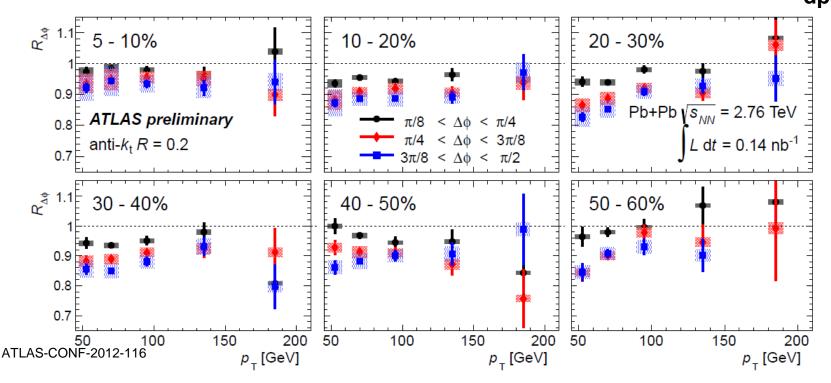
Dependence on jet radius for $p_T<100$ GeV in 0-10% central Weaker dependence is observed in 10-20% centrality bin No dependence on the jet radius is seen for more peripheral collisions



Jet fragmentation at QM'2011

Jet fragmentation

- Enhancement at low z, suppression at z≈0.1
- No modification at high z
- Similar results found for R=0.2 and 0.3 jets

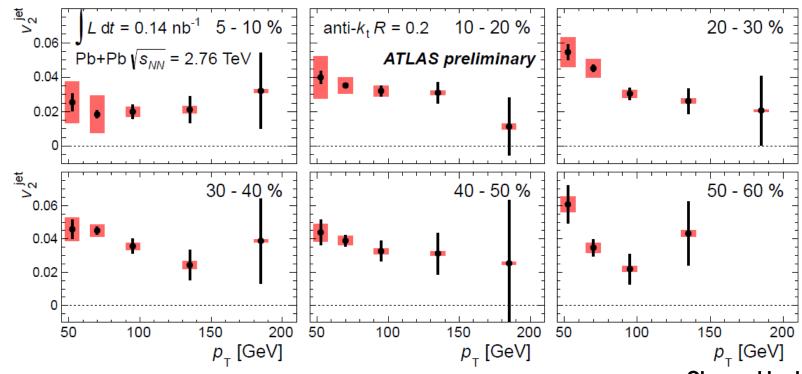


Azimuthal dependence of jet yields

Path length dependence of jet suppression

Ratios of yields in different slices of $\Delta \phi = \phi^{\text{jet}} - \Psi_2$

 $\mathbf{R}_{\Delta\phi} = \frac{\frac{\left. \frac{\mathbf{d}^2 \mathbf{N}_{jet}}{\mathbf{d} \mathbf{p}_{\mathsf{T}} \mathbf{d} \Delta \phi} \right|_{\Delta\phi = \Delta\phi_i}}{\left. \frac{\mathbf{d}^2 \mathbf{N}_{jet}}{\mathbf{d} \mathbf{p}_{\mathsf{T}} \mathbf{d} \Delta \phi} \right|_{\Delta\phi}}$

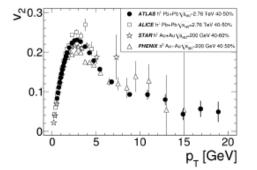


- Yields are reduced by about 15% for $3\pi/8 < \Delta \phi < \pi/2$ relative to $0 < \Delta \phi < \pi/8$

Jet v₂

Jet v_2 measured for $45 < p_T < 210$ GeV R=0.2 jets

- Weak dependence on p_T above 100 GeV
- Some evidence for increase at lower p_T


ATLAS-CONF-2012-116

QM'2012, Washington D.C. 13/08/2012

B. Wosiek

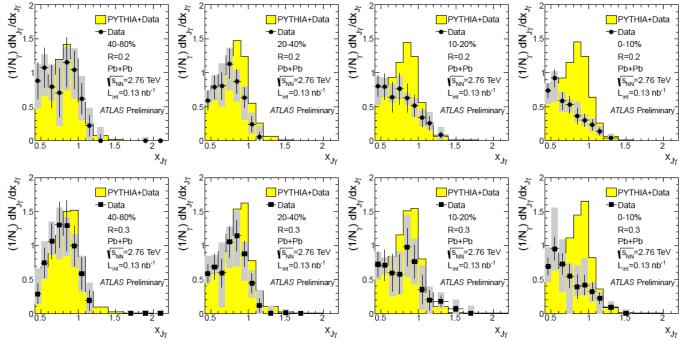
Charged hadrons

Phys. Lett. B707 (2012) 330-348

γ, Z – jet correlations

Modification of the jet energy relative to the probe not affected by the medium

γ - jet correlations

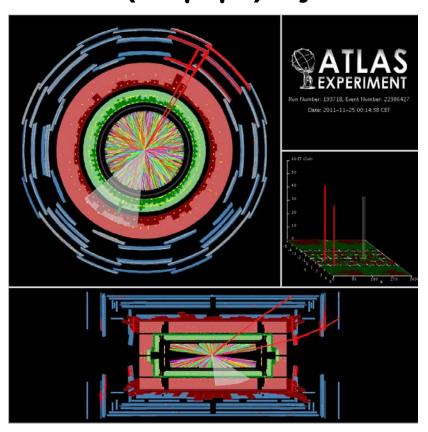

Large cross-section, purity 75-85%

 $E\gamma > 60 \text{ GeV}$: 60-90 GeV, $|\eta| < 1.3$

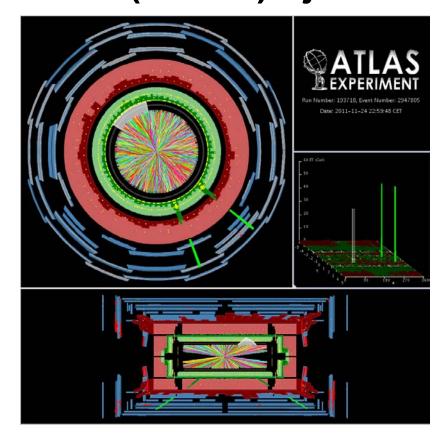
 $\left|\mathbf{x}_{\mathsf{J}\gamma}=\mathbf{p}_{\mathsf{T}}^{\mathsf{jet}}/\mathbf{p}_{\mathsf{T}}^{\gamma}\right|$

Jet: anti-kT, R=0.2, 0.3, p_T>25 GeV, |η|<2.1

• γ -jet separation $\Delta \phi > 7\pi/8$ (back-to-back)

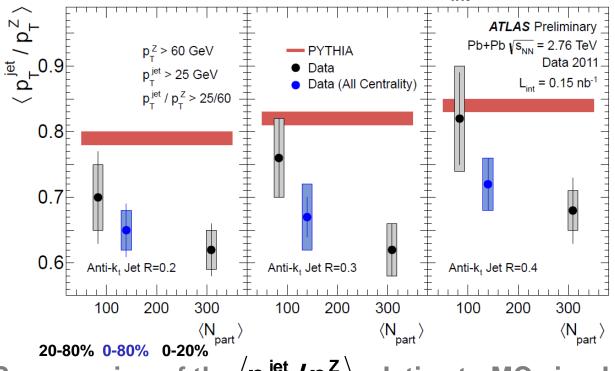

- Shape and integral compatible with PYTHIA for peripheral collisions
- With increasing centrality shift towards smaller $\mathbf{x}_{J\gamma}$ and reduction of the integral

ATLAS-CONF-2012-121



Z - jet correlations

 $Z(\rightarrow \mu^+\mu^-)$ - jet


 $Z(\rightarrow e^+e^-)$ - jet

Z - jet correlations

- $Z \rightarrow e^+e^-, \mu^+\mu^- p_T > 60 \text{ GeV}$
- Jet: anti-kT, R=0.2, 0.3, 0.4, p_T>25 GeV, |η|<2.1
- Z-jet separation > $\pi/2 \rightarrow 37$ events for L_{int}=0.15 nb⁻¹

 $\left\langle \mathbf{p}_{\mathsf{T}}^{\mathsf{jet}}\,\mathbf{/p}_{\mathsf{T}}^{\mathsf{z}}\right
angle$

- Suppression of the $\langle p_T^{jet}/p_T^Z \rangle$ relative to MC simulations with no energy loss (PYTHIA: Z+jet events)
- Stronger suppression for more central collisions

ATLAS results on jet studies at Quark Matter 2012:

Details in talks by:

- Martin Spousta, plenary Tuesday
- Peter Steinberg, Z,γ-jets, plenary Thursday
- **Zvi Citron**, Z-jet, *parallel 1B Tuesday*
- Aaron R. Angerami, parallel 2B Tuesday
- Martin Rybar, parallel 3B Wednesday

Summary

Collective flow

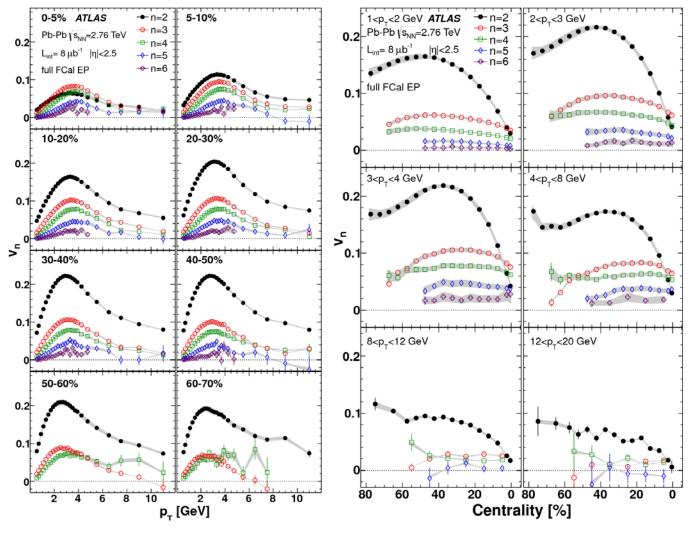
- New results on flow harmonics fluctuations
- Constraints on hydrodynamic models

Electroweak probes

- Z and γ production consistent with N_{coll} scaling

Medium sensitive probes

- Heavy quarks are less suppressed than charged hadrons
- Jet yields suppressed by a factor of 2 in central collisions
- Jet suppression depends on the jet size in central collisions
- Jet fragmentation function shows no modification at high z, but significant suppression with centrality at z≈0.1 and enhancement at very low z is observed
- Azimuthal dependence of jet yields shows expected path length dependence
- Jet v₂ weakly depends on jet p_T out to 200 GeV
- Jet quenching also studied with $Z_{,\gamma}$ jet correlations

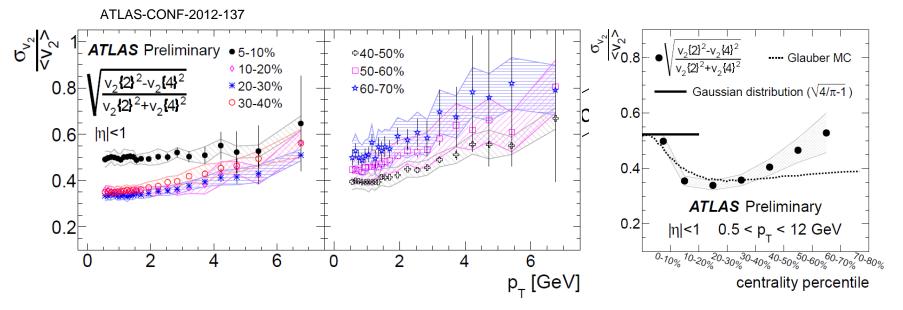

Backups

Measurement of Fourier coefficients

Phys. Rev. C86 (2012)014907

Similar p_T
dependence
for n=2-6 flow
harmonics

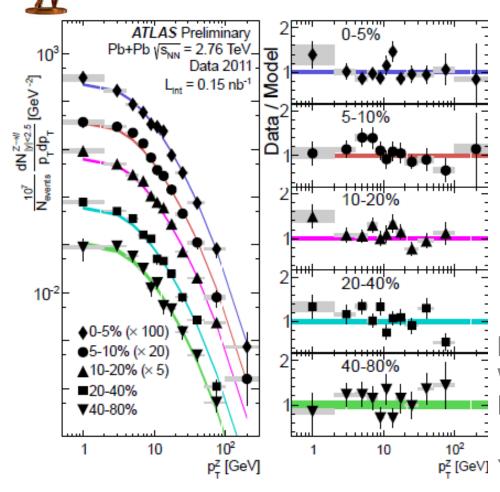
Weak centrality dependence observed for v₃-v₆

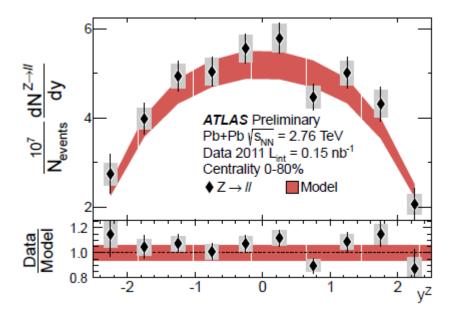

For the 5% most central events $V_3 > V_2$

Elliptic flow fluctuations

Extracted from 2- and 4-particle cumulants

$$\frac{\sigma_2}{\langle \mathbf{v}_2 \rangle} \approx \sqrt{\frac{\mathbf{v}_2 \{2\}^2 - \mathbf{v}_2 \{4\}^2}{\mathbf{v}_2 \{2\}^2 + \mathbf{v}_2 \{4\}^2}}$$




- weak p_T dependence for $p_T < 2$ GeV across all centralities; in 5-10% central p_T -independence holds up to higher p_T
- for p_T -integrated v_2 , $\sigma_2/< v_2>$ comparable to Glauber model except for peripheral collisions

(Glissando, W. Broniowki, M. Rybczynski, and P. Bozek, GLISSANDO: arXiv:0710.5731 [nucl-th])

consistent with ALICE results arXiv:1205.5761 [nucl-ex].

Centrality dependence of Z yields

 p_T and y distributions consistent with Pythia simulations for pp with NNLO cross section $\times <T_{\Delta\Delta}>$

P^Z [GeV] Yields consistent with N_{coll} scaling

 $v_2 = -0.011 \pm 0.018 \text{(stat.)} \pm 0.014 \text{(syst.)}$