Anisotropic flow of identified particles in Pb-Pb collisions at 2.76 TeV

F. Noferini
for the ALICE Collaboration
17th Aug 2012
Motivation

Anisotropic flow of identified particles is sensitive to the partonic degrees of freedom at the early times of a heavy-ion collision; studied vs. transverse momentum allows to quantify:

• rate of hydrodynamic radial expansion (mass dependence of v_n vs. p_T)
• properties of the deconfined phase (e.g. viscosity)
• details of hadronization mechanism (e.g. coalescence)

Fourier expansion

$$\frac{dN}{d\phi} \propto 1 + 2v_1 \cos[\phi - \Psi_1] + 2v_2 \cos[2(\phi - \Psi_2)] + 2v_3 \cos[3(\phi - \Psi_3)] + ...$$

Anisotropic flow coefficients covered in this talk
Outline

In this talk we present anisotropic flow of \(\pi, K, p, \Lambda, \Xi, \Omega \) and \(\phi \)-meson and investigate the properties of \(v_2 \) and \(v_3 \) vs. transverse momentum:

- particle mass dependence
- quark (light/strange) content
- comparison with hydrodynamic model calculations
- comparison with measurements at RHIC
- \(v_2/v_3 \) scaling properties with number of quarks and transverse kinetic energy.
- Does \(v_3 \) (originating from fluctuations) scale similar to \(v_2 \)?
Analysis details

VZERO detector
Two forward scintillator arrays
(-3.7 < \(\eta \) < -1.7, 2.8 < \(\eta \) < 5.1):
centrality / event plane

Inner Tracking System (ITS) and **Time Projection Chambers** (TPC):
tracking / event plane

Time Of Flight (TOF) and TPC: particle identification

DATA sample:
- Pb-Pb at \(\sqrt{s_{NN}} = 2.76 \) TeV
- 2010 data
- \(\sim 10 \)M events

Acceptance: \(|\eta| < 0.8 \)
\[\pi, K \text{ and } p/\bar{p} \text{ identification} \]

Particle identification with TOF & TPC:
- asymmetric β-cut to select a high purity sample of π, K and p.
- 2σ cut in the TPC dE/dx.
- p_T range (in GeV/c):
 - $\pi \to 0.3 < p_T < 3.5$
 - $K \to 0.4 < p_T < 2.5$
 - $p \to 0.5 < p_T < 4.0$
- purity: > 90%

Identification at high p_T with TPC:
- purity cut on the TPC dE/dx signal:
- p_T range (in GeV/c):
 - π and $p \to 3 < p_T < 16$
 - purity: > 90% for pions, > 80% for protons
K^0_s, Λ, Ξ, Ω and φ reconstruction

\[K^0_s \rightarrow \pi \pi \]
\[\Lambda(\bar{\Lambda}) \rightarrow p(\bar{p})\pi \]
\[\Xi^\pm \rightarrow \Lambda \pi^\pm \]
\[\Omega^\pm \rightarrow \Lambda K^\pm \]
\[\phi \rightarrow K^+K^- \]

Details on \(v_2 \) of \(K^0_s, \Lambda, \Xi \) and \(\Omega \):
See poster #147 by C. Perez Lara

Details on \(\phi \)-meson \(v_2 \):
See poster #414 by Y. Zhou
Elliptic flow of identified particles
Elliptic flow of π, K and p

- Mass ordering observed for different species. p_T value at which v_2 is the same for all species is higher for heavier particle (in the region $p_T < 2$-3 GeV/c)
- Mass dependence persists up to high transverse momenta
Elliptic flow of K^0_s and Λ

Mass ordering is similar to v_2 of charged kaons and protons
Elliptic flow of Ξ and Ω

v_2 of heavier particles (Ξ and Ω) are shifted more to higher p_T.

F. Noferini QM12 17th Aug 2012
• at low p_T (where flow is affected by radial boost): ϕ-meson v_2 is similar to v_2 of (anti-)protons which has a similar mass
• at high p_T (where coalescence expected to be applicable) ϕ-meson v_2 is similar to v_2 of pions (light quark flavour mesons)
Overview of v_2 of all measured species

- v_2 is measured for a number of particles with light and strange quark content: $\pi, K, p/\bar{p}, K^0_s, \Lambda, \Xi, \Omega$ and ϕ
- Evident mass hierarchy at low and high p_T which changes with the collision centrality
- For v_2 of particles with heavy quark content see:
 - D-meson: talk #460 by D. Caffarri
 - Poster #413 by G. Luparello
 - J/Ψ: talk #473 by H. Yang
 - Heavy flavour electrons: talk #470 by S. Shingo
 - Poster #410 by T. Raascanu and Poster #416 by D. Moreira de Godoy
Comparison with hydrodynamic model calculations
Viscous hydrodynamic model calculations reproduce the main features of v_2 at low transverse momentum:
• mass dependence is better modelled for peripheral collisions
• for central collisions overestimate proton flow
• Adding hadronic rescattering phase improves the agreement with data Heinz, Shen, Song, AIP Conf. Proc. 1441, 766 (2012)
Ξ and Ω flow vs. hydro

Hydrodynamic model calculations reproduce larger boost towards higher p_T for Ξ and Ω (Heinz, Shen, Song, AIP Conf. Proc. 1441, 766 (2012); PRC84 044903)
Comparison with RHIC data
v_2 of π, K, p at LHC vs. RHIC

- v_2 measured at the LHC is slightly above the RHIC v_2 for pions and kaons
- v_2 of (anti-)protons reflects effect of larger radial flow at LHC
Similarly, the ϕ meson v_2 is compatible with larger radial flow at LHC
Elliptic flow scaling properties
• v_2 measured in the p_T region of 3-6 GeV/c can be used to test the model of the hadron production via quark coalescence
• v_2/n_q vs. p_T/n_q (n_q is the number of quarks per meson/baryon) shows that if such scaling exists it is only approximate (holds within 20%)
NCQ scaling of v_2 vs. transverse kinetic energy

For low p_T: v_2/n_q together with KE$_T$ scaling is violated at LHC
For KE$_T$/n$_q$ > 1 GeV/c antiproton’s v_2 is lower than that of pions
v_2/n_q and KE$_T$ scaling for all species

NCQ scaling maybe violated also for heavier particles, including the ϕ-meson
Identified particle triangular flow
• v_3 (which originates solely from flow fluctuations) exhibits similar particle mass dependence as that of v_2

• The value of p_T at which v_3 of all species cross looks similar to that for v_2
Elliptic and triangular flow at high transverse momentum

• up to $p_T \sim 8 \text{ GeV/c}$, proton v_2 and v_3 is larger than that of pion
• pion/proton v_2 at high transverse momenta ($p_T > 10 \text{ GeV/c}$) is significant and non-zero, while within experimental uncertainties v_3 is consistent with zero

arXiv:1205.5761
Summary

Elliptic flow of π, K, p, Λ, Ξ, Ω and ϕ is measured vs. transverse momentum for different collision centrality classes for Pb-Pb collision at 2.76 TeV:

- $p_T < 3$ GeV/c: observed mass dependence is reproduced by the hydrodynamic model calculations (VISH2+1 CGC, VISHNU)
- The larger mass splitting of v_2 to higher p_T observed by ALICE is consistent with stronger radial flow at the LHC
- KE_T scaling does not hold at the LHC
- $p_T \sim 3$-6 GeV/c: constituent number of quark scaling holds only approximately (within 20%)
- $p_T \sim 6$-8 GeV/c: mass dependence persist up to high transverse momenta with proton flow being larger than that of pion up to $p_T \sim 8$ GeV/c
- v_3 of π, K, and p/\bar{p} has a similar mass dependence and crossing point as that of v_2
Backup
NCQ scaling of v_3 works better than for v_2 but it is still only approximate.