

Event shape engineering with ALICE A. Dobrin (Wayne State University) for the ALICE Collaboration

- Anisotropic flow
- The ALICE experiment
- Event shape selection
 - Unidentified charged particle v_2
 - Identified particle v_2
- Summary

Anisotropic flow

• Particle azimuthal distribution measured with respect to the symmetry planes is not isotropic

$$E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_T dp_T dy} (1 + \sum_{n=1}^{\infty} 2 v_n \cos(n(\phi - \Psi_n)))$$
$$v_n = \langle \cos(n(\phi_i - \Psi_n)) \rangle$$

- Ψ_n n-th harmonic symmetry plane
- v_n quantify the event anisotropy
 - $-v_2$ elliptic flow
- Issues:
 - Non-flow
 - Flow fluctuations

A Large Ion Collider Experiment

~12M minimum-bias Pb-Pb events at $\sqrt{s_{NN}}$ = 2.76 TeV (2010 run) used in this analysis

TPC tracks (0.2<p₁<20 GeV/c)

A. Dobrin - Quark Matter 2012

VZERO-A / VZERO-C

- PID based on the ionization energy loss in the TPC
 - Calculate $\Delta_{\pi} = dE/dx dE/dx >_{\pi}$
- Select ranges where the contamination is small:
 - Pions: contamination < 1 %</p>
 - Protons: contamination < 15 %

Event shape selection: Idea

select events with given flow value?

 10^{3} 7 < b < 7.5 fm 10^{2} 10 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Yes, based on the length of flow vector

Flow vector \rightarrow q-distributions

Cutting on q_2 in one pseudo-rapidity window and measure v_2 in another window:

- Width of v_2 distribution for shape engineered (SE) events smaller than unbiased results
- Variation of v_2 up to factor of 2-3

Event shape selection: Implementation

• Tools:

– Cut on q_2 from one η window of the TPC (-0.8< η <0 or 0< η <0.8) and measure v_2 in the second window

ALICE

Event shape selection: Implementation

- Tools:
 - Cut on q_2 from one η window of the TPC (-0.8< η <0 or 0< η <0.8) and measure v_2 in the second window
 - Cut on q_2 from VZERO-C (-3.7<η<-1.7) and measure v_2 in TPC (-0.8<η<0.8)
 - Cut on q_2 from VZERO-A (2.8<q<5.1) and measure v_2 in TPC (-0.8<q<0.8)
- Systematics:
 - Different η gaps \rightarrow different non-flow contributions
 - Different detector coverages → different flow and multiplicities → different method sensitivity

A. Dobrin - Quark Matter 2012

ALICE

Event plane (EP) method

- Calculate the flow vectors: $Q_{n,x} = \sum_{i} w_i \cos(n\phi_i) \quad Q_{n,y} = \sum_{i} w_i \sin(n\phi_i)$
- Determine the event plane angle: $\psi_n{=}atan2(Q_{n,y},Q_{n,x})/\textit{n}$
- The flow coefficients are given by: $v_n = \langle \cos(n(\phi_i \psi_n)) \rangle / R_n$

 R_n is the event plane resolution: $R_n = \langle \cos(n(\psi_n - \Psi_n)) \rangle$

• Resolution: assuming $X_{_{VZERO-A(C)}}/X_{_{TPC}}$ and $X_{_{VZERO-A}}/X_{_{VZERO-C}}$ in the unbiased sample to be the same as in the biased one (X=v* \sqrt{M} – the parameter used to determine the event plane resolution)

A. Dobrin - Quark Matter 2012

$v_2(p_T)$: SE (q_2 TPC) vs unbiased

Cutting on q_2 from half of the TPC (-0.8< η <0 or 0< η <0.8) and correlate tracks from the other half (0< η <0.8 or -0.8< η <0) with EP from VZERO

 $v_2(p_T)$ for unbiased (black) and SE (5% high, 10% low) events

$v_2(p_T)$: SE (q_2 VZERO-A) vs unbiased

Cutting on q_2 from VZERO-A (2.8< η <5.1) and correlate tracks from TPC (-0.8< η <0.8) with EP from VZERO-C (-3.7< η <-1.7) Cutting on q_2 from VZERO-C also investigated (see backup)

 $v_2(p_T)$ for unbiased (black) and SE (5% high, 10% low) events

Ratio between SE (5% high, 10% low) and unbiased v_2

- Non-flow contributions significantly reduced using η gap
- Smaller ratios due to smaller flow and multiplicity → method sensitivity to the event shape
- $v_2 \sim$ shape (ratio almost constant) at least up to $p_T=6$ GeV/c
- Effect of event shape fluctuations becomes small for $p_T > 6 \text{ GeV/c}$

A. Dobrin - Quark Matter 2012

- Method gives consistent results in the case of q_2 VZERO-A and VZERO-C
 - Non-flow contributions present in the case of q_2 TPC
- Method sensitivity to the event shape deteriorates for peripheral collisions

Cutting on q_2 from VZERO-A (2.8< η <5.1) and correlate tracks from TPC (-0.8< η <0.8) with EP from VZERO-C (-3.7< η <-1.7)

A. Dobrin - Quark Matter 2012

- Using q-distributions allows to select events with larger or smaller elliptic flow than the average
 - Effect of shape fluctuations extends at least up to $p_T=6$ GeV/c
- Method is sensitive to the pseudo-rapidity range used to determine the flow vector due to different multiplicities and flow
- Non-flow contributions are significant when no/small η gap is employed between the region used to determine the flow vector and the one in which the elliptic flow is measured

New, promising tool

Plenty of reasons to use event shape selection:

- Anisotropic flow shape evolution
- Identified particle flow mass splitting
- Highly anisotropic events with large particle density compare to hydrodynamic calculations
- Inclusive spectra and particle ratios dependence on event shape
 - See talk by L. Milano, 5A, 14:00
- Two-particle correlations check the presence of the away-side double bump in "no-triangularity" events
 - See poster 184 by A. Timmins
- Chiral magnetic effect study background evaluation
- Evolution of eccentricities, dependence of the HBT radii on flow field

q-distributions

Select events based on the magnitude of flow vector \rightarrow q-distributions (similar widths for different multiplicities)

Parameters:

- M multiplicity
- δ non-flow
- σ_v flow fluctuations width

q-distributions well understood; used to extract elliptic flow

A. Dobrin - Quark Matter 2012

Event plane resolution

- From the unbiased sample get X_{TPC} , $X_{VZERO-C}$, $X_{VZERO-A}$ (X=v* \sqrt{M} the parameter used to determine the event plane resolution)
- Assume $X_{_{VZERO\text{-}A(C)}}\!/X_{_{TPC}}$ and $X_{_{VZERO\text{-}A}}\!/X_{_{VZERO\text{-}C}}$ in the unbiased sample to be the same as in the biased one
- From the TPC VZERO-A(C) and VZERO-A VZERO-C correlation in the biased sample determine $\rm X_{biased}$
- From X_{biased} , $(X_{VZERO-A(C)}/X_{TPC})_{unbiased}$, $(X_{VZERO-A}/X_{VZERO-C})_{unbiased}$ calculate resolution for VZERO-A and VZERO-C

A. Dobrin - Quark Matter 2012

$v_2(p_T)$: SE (q₂VZERO-C) vs unbiased

Cutting on q_2 from VZERO-C (-3.7< η <-1.7) and correlate tracks from TPC $(-0.8 < \eta < 0.8)$ with EP from VZERO-A (2.8 < \eta < 5.1)

 $v_2(p_T)$ for unbiased (black) and SE (5% high, 10% low) events

Ratio between SE (5% high, 10% low) and unbiased v_2

