Event shape engineering with ALICE
 A. Dobrin (Wayne State University) for the ALICE Collaboration

- Anisotropic flow
- The ALICE experiment
- Event shape selection
- Unidentified charged particle V_{2}
- Identified particle V_{2}
- Summary

Anisotropic flow

- Particle azimuthal distribution measured with respect to the symmetry planes is not isotropic

$$
\begin{gathered}
E \frac{d^{3} N}{d^{3} p}=\frac{1}{2 \pi} \frac{d^{2} N}{p_{T} d p_{T} d y}\left(1+\sum_{n=1}^{\infty} 2 v_{n} \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right. \\
v_{n}=\left\langle\cos \left(n\left(\phi_{i}-\Psi_{n}\right)\right)\right\rangle
\end{gathered}
$$

- $\Psi_{n}-$ n-th harmonic symmetry plane
- v_{n} quantify the event anisotropy
- v_{2} elliptic flow
- Issues:
- Non-flow
- Flow fluctuations

A Large Ion Collider Experiment

VZERO-A / VZERO-C
$\sim 12 \mathrm{M}$ minimum-bias $\mathrm{Pb}-\mathrm{Pb}$ events at $\sqrt{ } \mathrm{s}_{\mathrm{N}}=2.76 \mathrm{TeV}$ (2010 run) used in this analysis

- TPC tracks $\left(0.2<\mathrm{p}_{\mathrm{T}}<20 \mathrm{GeV} / \mathrm{c}\right)$

Particle identification (PID)

- PID based on the ionization energy loss in the TPC
- Calculate $\left.\Delta_{\pi}=\mathrm{dE} / \mathrm{dx}-<\mathrm{dE} / \mathrm{dx}\right\rangle_{\pi}$
- Select ranges where the contamination is small:
- Pions: contamination < 1 \%
- Protons: contamination < 15 \%

Event shape selection: Idea

$$
\frac{\stackrel{\bar{v}}{E}}{\frac{\sigma^{N}}{}}
$$

Yes, based on the length of flow vector

For fixed centrality, flow fluctuates. Can we select events with given flow value?

Flow vector \rightarrow q-distributions

$$
\begin{aligned}
& Q_{n, x}=\sum_{i} \cos \left(n \phi_{i}\right) \\
& Q_{n, y}=\sum_{i} \sin \left(n \phi_{i}\right)
\end{aligned} \rightarrow \begin{aligned}
& Q_{n}=\left\{Q_{n, x}, i Q_{n, y}\right\} \\
& q_{n}=\mid Q_{n} / / \sqrt{M}
\end{aligned}
$$

Cutting on q_{2} in one pseudo-rapidity window and measure v_{2} in another window:

- Width of v_{2} distribution for shape engineered (SE) events smaller than unbiased results
- Variation of V_{2} up to factor of 2-3

Event shape selection: Implementation

- Tools:
- Cut on q_{2} from one η window of the TPC $(-0.8<\eta<0$ or $0<\eta<0.8$) and measure v_{2} in the second window

Event shape selection: Implementation

- Tools:
- Cut on q_{2} from one η window of the TPC $(-0.8<\eta<0$ or $0<\eta<0.8$) and measure v_{2} in the second window
- Cut on q_{2} from VZERO-C $(-3.7<\eta<-1.7)$ and measure v_{2} in TPC $(-0.8<\eta<0.8)$
- Cut on q_{2} from VZERO-A $(2.8<\eta<5.1)$ and measure v_{2} in TPC ($-0.8<\eta<0.8$)
- Systematics:
- Different η gaps \rightarrow different non-flow contributions
- Different detector coverages \rightarrow different flow and multiplicities \rightarrow different method sensitivity

A. Dobrin - Quark Matter 2012

Event plane (EP) method

- Calculate the flow vectors: $Q_{n, x}=\sum_{i} w_{i} \cos \left(n \phi_{i}\right) \quad Q_{n, y}=\sum_{i} w_{i} \sin \left(n \phi_{i}\right)$
- Determine the event plane angle: $\psi_{\mathrm{n}}=\operatorname{atan} 2\left(\mathrm{Q}_{\mathrm{n}, \mathrm{y}}, \mathrm{Q}_{\mathrm{n}, \mathrm{x}}\right) / n$
- The flow coefficients are given by: $v_{n}=\left\langle\cos \left(n\left(\phi_{i}-\psi_{n}\right)\right)\right\rangle / R_{n}$
R_{n} is the event plane resolution: $R_{n}=\left\langle\cos \left(n\left(\psi_{n}-\Psi_{n}\right)\right)\right\rangle$
- Resolution: assuming $X_{\text {vZero-Ac) }} / X_{\text {tpC }}$ and $X_{\text {vzero-A }} / X_{\text {vZero-c }}$ in the unbiased sample to be the same as in the biased one ($X=v^{*} \sqrt{ } M$ - the parameter used to determine the event plane resolution)

A. Dobrin - Quark Matter 2012

$v_{2}\left(p_{T}\right): S E\left(q_{2} T P C\right)$ vs unbiased

Cutting on q_{2} from half of the TPC $(-0.8<\eta<0$ or $0<\eta<0.8)$ and correlate tracks from the other half $(0<\eta<0.8$ or $-0.8<\eta<0)$ with EP from VZERO
$\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ for unbiased (black) and SE (5\% high, 10\% low) events

5% high q_{2} 10% low q_{2} No q_{2} selection

Ratio between SE (5\% high, 10% low) and unbiased v_{2}

A. Dobrin - Quark Matter 2012

- Non flat ratios may indicate non-flow contributions

$v_{2}\left(p_{T}\right)$: SE $\left(q_{2}\right.$ VZERO-A) vs unbiased

Cutting on q_{2} from VZERO-A $(2.8<\eta<5.1)$ and correlate tracks from TPC $(-0.8<\eta<0.8)$ with EP from VZERO-C ($-3.7<\eta<-1.7$) Cutting on q_{2} from VZERO-C also investigated (see backup)
$\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ for unbiased (black) and SE (5\% high, 10\% low) events

Ratio between SE (5\% high, 10% low) and unbiased v_{2}

30-40\%

A. Dobrin - Quark Matter 2012
> 5% high q_{2} 10% low q_{2} No q_{2} selection

- Non-flow contributions significantly reduced using η gap
- Smaller ratios due to smaller flow and multiplicity \rightarrow method sensitivity to the event shape
- v_{2} ~ shape (ratio almost constant) at least up to $p_{T}=6 \mathrm{GeV} / \mathrm{c}$
- Effect of event shape fluctuations becomes small for $p_{T}>6 \mathrm{GeV} / \mathrm{c}$

Integrated v_{2} : SE vs unbiased

No q_{2} selection

Integrated v_{2} : SE vs unbiased

No q_{2} selection
5% high q_{2} (TPC)
$\square \quad 10 \% \operatorname{low}_{q_{2}}$ (TPC)

Integrated v_{2} : SE vs unbiased

No q selection
5% high q_{2} (TPC)
5% high q_{2}^{2} (VZERO-C)
10% low q_{2} (TPC)
10% low q_{2}^{2} (VZERO-C)

Integrated v_{2} : SE vs unbiased

- Method gives consistent results in the case of q_{2} VZERO-A and VZERO-C
- Non-flow contributions present in the case of q_{2} TPC
- Method sensitivity to the event shape deteriorates for peripheral collisions

PID $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$:

 SE (q_{2} VZERO-A) vs unbiased

 SE (q_{2} VZERO-A) vs unbiased}

Cutting on q_{2} from VZERO-A $(2.8<\eta<5.1)$ and correlate tracks from TPC ($-0.8<\eta<0.8$) with EP from VZERO-C $(-3.7<\eta<-1.7)$

A. Dobrin - Quark Matter 2012

Summary

- Using q-distributions allows to select events with larger or smaller elliptic flow than the average
- Effect of shape fluctuations extends at least up to $p_{T}=6 \mathrm{GeV} / \mathrm{c}$
- Method is sensitive to the pseudo-rapidity range used to determine the flow vector due to different multiplicities and flow
- Non-flow contributions are significant when no/small η gap is employed between the region used to determine the flow vector and the one in which the elliptic flow is measured

New, promising tool

Plenty of reasons to use event shape selection:

- Anisotropic flow - shape evolution
- Identified particle flow - mass splitting
- Highly anisotropic events with large particle density - compare to hydrodynamic calculations
- Inclusive spectra and particle ratios - dependence on event shape
- See talk by L. Milano, 5A, 14:00
- Two-particle correlations - check the presence of the away-side double bump in "no-triangularity" events
- See poster 184 by A. Timmins
- Chiral magnetic effect study - background evaluation
- Evolution of eccentricities, dependence of the HBT radii on flow field
- ...

Backup

q-distributions

Select events based on the magnitude of flow vector \rightarrow q-distributions (similar widths for different multiplicities)

$$
\left.\begin{array}{r}
Q_{n, x}=\sum_{i} \cos \left(n \phi_{i}\right) \\
Q_{n, y}=\sum_{i} \sin \left(n \phi_{i}\right)
\end{array} \rightarrow \begin{array}{l}
Q_{n}=\left\{Q_{n, x}, i Q_{n, y}\right\} \\
q_{n}=\left|Q_{n}\right| \sqrt{M}
\end{array}\right] \begin{gathered}
\frac{d N}{d q} \propto \frac{1}{\sigma^{2} q} \exp \left(\frac{-M \bar{v}^{2}+q^{2}}{2 \sigma^{2}}\right) I_{0}\left(\frac{q \bar{v} \sqrt{M}}{\sigma}\right) \propto B G(q ; \bar{v} \sqrt{M}, \sigma) \\
\sigma \approx\left[1+M\left(\delta+2 \sigma_{v}^{2}\right)\right] / 2 \quad\left\langle q^{2}\right\rangle=\bar{v}^{2} M+2 \sigma^{2}
\end{gathered}
$$

Parameters:
M - multiplicity
δ - non-flow
$\sigma_{v}-$ flow fluctuations width
q-distributions well understood; used to extract elliptic flow

Event plane resolution

10% low q_{2}

- From the unbiased sample get $X_{T P C}, X_{\text {VZERO-C }}, X_{\text {VZERO-A }}\left(X=V^{*} \sqrt{M}\right.$ - the parameter used to determine the event plane resolution)
- Assume $X_{\text {vzero-ac(})} / X_{\text {tpc }}$ and $X_{\text {vzero-A }} / X_{\text {vzero-c }}$ in the unbiased sample to be the same as in the biased one
- From the TPC - VZERO-A(C) and VZERO-A - VZERO-C correlation in the biased sample determine $\mathrm{X}_{\text {biased }}$
- From $X_{\text {biased }}$, $\left(X_{\text {vZERO-A(C) }} / X_{\text {TPC }}\right)_{\text {unbiased }}$, $\left(X_{\text {vZERO-A }} / X_{\text {vZERo-C }}\right)_{\text {unbiased }}$ calculate resolution for VZERO-A and VZERO-C

$v_{2}\left(p_{T}\right):$ SE $\left(q_{2}\right.$ VZERO-C) vs unbiased

Cutting on q_{2} from VZERO-C ($-3.7<\eta<-1.7$) and correlate tracks from TPC $(-0.8<\eta<0.8)$ with EP from VZERO-A $(2.8<\eta<5.1)$
$\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ for unbiased (black) and SE (5\% high, 10\% low) events

5% high q_{2} 10% low q_{2}
No q_{2} selection

Ratio between SE (5% high, 10% low) and unbiased v_{2}
 $08 / 14 / 12$

A. Dobrin - Quark Matter 2012

PID $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$:
 SE (q_{2} VZERO-C) vs unbiased

Cutting on q_{2} from VZERO-C ($-3.7<\eta<-1.7$) and correlate tracks from TPC $(-0.8<\eta<0.8)$ with EP from VZERO-A $(2.8<\eta<5.1)$

10% low q_{2}

A. Dobrin - Quark Matter 2012

