Inclusive isolated photons in pp and PbPb collisions at 2.76 TeV with CMS

George Stephans
For the CMS Collaboration
Why photons?

- Photons from CMS recently used to explore the fundamental origin of mass

Higgs(?)→γγ

- BUT ...

arXiv:1207.7235 (accepted by PLB)
Why photons?

- Higgs mechanism provides only a few % of the mass of things most non-physicists care about (stars, planets, people, iPads ...)
 - The vast majority of the mass is provided by non-perturbative interactions of quarks & gluons

- CMS photons also used to study this “other” source of mass
 - Probe quarks & gluons pushed to extremes of temperature and density
Why photons?

- Yield of directly produced high p_T photons can be predicted theoretically
 > Properties of the initial state (parton density functions in nuclei, number of nucleon-nucleon collisions)
- Photons are unaffected by the medium

This talk: Test these two assumptions
What is an *isolated* photon?

- An “isolated” photon is one which has very little, if any, energy carried by particles emitted close to the photon direction.
Why *isolated* photons?

- Photons mechanisms: Direct production (the needle we want), particle decay (the haystack), fragmentation (small effect), bremsstrahlung (negligibly small effect)

Processes we *want* produce *isolated* photons

Processes we *don’t want*, incl. decay (not shown), dominated by *non-isolated* photons

PYTHIA photons ~80% decay ~15% direct ~5% fragmentation
Inner tracker: charged particles for isolation

EM and Hadron calorimeters: photons, E_{hadronic} for isolation

Photons

Other particles

Region used

| $|\eta|< 2.4$ |
|----------------|
| Muon |

| $|\eta|< 5.2$ |
|----------------|
| HCAL |

| $|\eta|< 3.0$ |
|----------------|
| ECAL |

| $|\eta|< 2.5$ |
|----------------|
| Tracker |
• In PbPb collisions, almost \textit{no} photons are isolated due to other particles from the underlying event

• Use the mean E_T per unit area in an η strip to subtract background inside the isolation cone $\Delta R < 0.4$
Generator level: $\Delta R < 0.4$
$\Sigma E_T^{\text{IsoCone}} < 5$ GeV
with only particles from the same hard scattering

CMS Data: $\Delta R < 0.4$
$\Sigma E_T^{\text{IsoCone}} < 5$ GeV
using the calorimeter and tracker minus background
Removing electrons

- Isolated electrons are rejected using tracking
 - Reject “photons” that are close in η and ϕ to tracked electron candidates

- Fraction of electrons that “escape” these cuts estimated from PYTHIA $W \rightarrow e\nu$ decays embedded into minimum bias PbPb data

- Small correction (~4-8%) to photons found using this “escape” ratio and measured electron yields
Removing decay photons

- Take advantage of CMS ECAL’s fine segmentation
 \[\Delta \eta \times \Delta \Phi = 0.0174 \times 0.0174 \]
- Define a “width” parameter:
 \[
 \sigma_{\eta \eta}^2 = \frac{\sum w_i (\eta_i - \langle \eta \rangle)^2}{\sum w_i}
 \]
 \[
 w_i = \max \left(0, 4.7 + \ln \left(\frac{E_i}{E_{\text{Total}}} \right) \right)
 \]
Removing decay photons

After isolation & shower shape cut:
~70% direct
~20% decay
~10% fragmentation

\[\sigma_{\eta\eta} = \frac{\sum w_i (\eta_i - \langle \eta \rangle)^2}{\sum w_i} \]

\[w_i = \max \left(0, 4.7 + \ln \left(\frac{E_i}{E_{Total}} \right) \right) \]
Details of removing decay photons

A technique also used in CMS pp analysis:

- **Signal template**: obtained from PYTHIA+MinBias data
- **Decay template**: Using a data-driven method with non-isolated photons: $\Delta R<0.4$, $6 \text{ GeV} < \Sigma E_{T}^{\text{IsoCone}} < 11 \text{ GeV}$
Signal template and background (decay) template extracted in separate bins of photon E_T and collision centrality.

PLB 710 (2012) 256
Systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>pp</th>
<th>PbPb centrality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–10%</td>
<td>10–30%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>1–5%</td>
<td>5–9%</td>
</tr>
<tr>
<td>Signal modeling</td>
<td>3–5%</td>
<td>1–5%</td>
</tr>
<tr>
<td>Background modeling</td>
<td>9–13%</td>
<td>15–23%</td>
</tr>
<tr>
<td>Electron veto</td>
<td>1%</td>
<td>3–6%</td>
</tr>
<tr>
<td>Photon isolation definition</td>
<td>2%</td>
<td>7%</td>
</tr>
<tr>
<td>Energy scale</td>
<td>3–6%</td>
<td>9%</td>
</tr>
<tr>
<td>Energy smearing</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>Shower-shape fit</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>Anomalous signal cleaning</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>NMB</td>
<td>–</td>
<td>3%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>6%</td>
<td>–</td>
</tr>
<tr>
<td>Total without T_{AA}</td>
<td>14–16%</td>
<td>23–30%</td>
</tr>
</tbody>
</table>

| T_{AA} | – | 4% | 6% | 12% |
| Total | 14–16%| 23–30% | 23–26% | 26–31% |

Main sources of systematic uncertainties:

Background modeling and photon energy scale
Reconstructed photon spectra scaled by T_{AA}
Consistent with JETPHOX using pp PDF (CT10).
Isolated photon R_{AA} in 0-10% PbPb collisions

- CMS extracted first R_{AA} for isolated photons
- pp reference: pp data at 2.76 TeV
- R_{AA} consistent with 1
- Compare to NLO with nPDFs: EPS09, nDS, HKN07

$$R_{AA} = \frac{\sigma_{pp}^{inel}}{\langle N_{coll} \rangle} \frac{d^2 N_{AA}}{dp_T d\eta} / \frac{d^2 \sigma_{pp}}{dp_T d\eta}$$

PLB 710 (2012) 256
Isolated photon R_{AA} vs E_T & Centrality

No dependence on centrality or E_T

PLB 710 (2012) 256
Conclusions

- Results are consistent with expectations:
 > Hard scattering processes scale with the number of nucleon-nucleon collisions
 > Photons not quenched

- Establishes the basis for studies using photons as unmodified hard probes
 > Photons as "tags" for unquenched jet energy
 - Talk by Yue Shi Lai yesterday
 - See also arXiv:1205.0206

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN