Inclusive jet and charged particle R_{AA} in PbPb collisions at 2.76 TeV with CMS

Marguerite Belt Tonjes
University of Maryland
for the CMS Collaboration

Quark Matter conference, Washington DC
14 August, 2012
Compact Muon Solenoid (CMS)

- EM and HAD calorimeters: $|\eta| < 5$
- Beam Scintillator Counters (BSC): $3.2 < |\eta| < 4.7$
- HF$^\pm$: $2.9 < |\eta| < 5.2$
- CASTOR
- ZDC: $\pm 140m$
- Magnet yoke: 3.8 T
- Silicon tracker: $|\eta| < 2.4$
- Muon chambers: $|\eta| < 2.5$
Charged particle analysis

- **Triggering:**
 - Min. bias: coincidence triggers
 - BSC (3.2<|η|<4.7) or HF (2.9<|η|<5.2)
 - 2011 jet triggers extend statistical reach of track p_T
 - Jets: Iterative cone + background subtraction
 - Thresholds: 65 and 80 GeV

- **Event Selection:**
 - Beam Halo veto
 - Beam-scraping cleaning
 - ECAL, HCAL noise cleaning
 - Vertex with at least 2 tracks
 - 3 towers ($E>3$ GeV) in HF±
Track reconstruction

- **Track reconstruction:** iterative algorithm
 - Find tracks in consecutive steps
 - Remove hits belonging to tracks in each step
 - Merge tracks based on the fraction of shared hits
 - “Calorimeter compatibility”: tracks are matched to closest calorimeter cells (for track $p_T \gtrsim 30$ GeV/c)

→ High efficiency, low fake track rate at high-\(p_T\)
PbPb charged particle spectra

- Measured up to 100 GeV/c in six centrality bins
- Uses full 2011 run statistics at high \(p_T \) – 150 \(\mu b^{-1} \)
- Use to make \(R_{AA} \)

\[
R_{AA} = \frac{dN^{AA}/dp_T}{\langle T_{AA} \rangle \sigma^{pp}/dp_T} \]

\[
\langle T_{AA} \rangle = \frac{\langle N_{coll} \rangle}{\sigma^{NN}_{inel}}
\]
Charged particle R_{AA}

- Dip structure develops as a function of centrality
- R_{AA} increases at high p_T

Charged particle R_{AA} evolution

- Below 10 GeV/c, LHC is 50% more suppressed than RHIC
- Most models predict the rise at LHC, but the slope varies
Central charged particle R_{AA} shows suppression up to high p_T
Jet R_{AA} analysis

- Make measured jet spectra
 - Jet triggered events $E>80$ GeV
 - Inclusive jets $p_T>100$ GeV/c, $|\eta|<2$
 - Anti-kT particle flow jets, iterative background subtraction (PbPb)
- Remove detector effects in both PbPb and pp (p_T resolution and jet p_T scale):
 - Main technique: unfold jet spectrum based on performance of PbPb MC (Bayesian unfolding)
 - Cross-checks:
 - Generalized Singular Value Decomposition (GSVD) unfolding
 - Bin-by-bin unfolding
 - Smear pp data based on jet resolution & scale from PbPb MC (different p_T, centrality bins)
- Construct ratio of jet spectra: unfolded PbPb to unfolded pp
- Also analyzed with calorimeter jets instead of particle flow
Jet background from PbPb

- Average background p_T subtracted from each jet
 - Example: $100 < \text{jet } p_T < 110 \text{ GeV/c}$
- Remaining jet bins have similar agreement for data & MC
Jet background in PbPb

- Mean and width for background p_T subtracted from jets
- Not detector η & p_T energy corrected (factor \sim10-25%)

⇒ Be careful when comparing directly to jet p_T
Jet R_{AA} methods comparison

- Good agreement between 4 different methods
- Unfolding only makes a small difference in the jet R_{AA}
Different jet cone size

- No strong dependence on jet radius
Jet R_{AA} decreases with increasing number of participants.
Central R_{AA}

CMS (∗ preliminary) PbPb $\sqrt{s_{NN}} = 2.76$ TeV

$$\int L \, dt = 7-150 \, \mu b^{-1}$$

- Z (0-100%) $p_T > 20$ GeV/c
- W (0-100%) $p_T > 25$ GeV/c
- Isolated photon (0-10%)

Charged particles (0-5%)

Looking at the same parton p_T range

Charged particles from $p_T=20-100$ GeV/c: $z = p_T(\text{track})/p_T(\text{jet}) = 0.5$
In central PbPb collisions:

- Charged particle R_{AA}: minimum of 0.13 at low p_T
 - Dip structure increases from peripheral to central
- Charged particle $R_{AA} \approx 0.5$ at high p_T
- Jet $R_{AA} \approx 0.5$ for jets from p_T of 100 to 300 GeV/c
- Jet R_{AA} is independent of cone size for jets from p_T of 100 to 300 GeV/c

Charged particle and jet R_{AA} decrease from peripheral to central PbPb collisions at 2.76 TeV