The statistical model in Pb-Pb collisions at the LHC

HELMHOLTZ GEMEINSCHAFT

- Introductory remarks is quark matter at LHC in equilibrium?
- Energy dependence of hadron production and statistical model
- Is there anything special at LHC energy?
- The case of heavy quarks and quarkonia

work based on collaboration with A. Andronic, K. Redlich, and J. Stachel

QM2012 conference Washington, D.C. Aug. 16, 2012

HELMHOLTZ GEMEINSCHAFT

• Statistical model analysis of (u,d,s) hadron production: a test of equilibration of quark matter near the phase boundary

• No (strangeness) equilibration in hadronic phase

 Present understanding: multi-hadron collisions near phase boundary bring hadrons close to equilibrium – supported by success of statistical model analysis
 pbm, Stachel, Wetterich, Phys.Lett. B596 (2004) 61-69

- This implies little energy dependence above RHIC energy
- Analysis of hadron production \rightarrow determination of T

Is this picture also supported by LHC data?

UNIVERSITÄT

Parameterization of all freeze-out points before LHC

data

note: establishment of limiting temperature

T_{lim} = 164 +/- 4 MeV

get T and μ_B for all energies

for LHC predictions we picked T = 164 MeV

A. Andronic, pbm, J. Stachel, Nucl. Phys. A772 (2006) 167 nucl-th/0511071

Important note: corrections for weak decays

All ALICE data do not contain hadrons from weak decays of hyperons and strange mesons – correction done in hardware via ITS inner tracker

The RHIC data contain varying degrees of such weak decay hadrons. This was on average corrected for in previous analyses.

In light of high precision LHC data the corrections done at RHIC need to be revisited.

Re-evaluation of fits at RHIC energies – special emphasis on corrections for weak decays

Note: corrections for protons and pions from weak decays of hyperons depend in detail on experimental conditions

RHIC hadron data all measured without application of Si vertex detectors

In the following, corrections were applied as specified by the different RHIC experiments

Au+Au central at 200 GeV, all experiments combined

TECHNIS

DARMSTAD

GSI

RHIC lower energies, STAR data alone

reasonable fits, T = 160 - 164 MeV

now new ALICE data at LHC energy arXiv:1208.1974 [hep-ex]

TECHNIS

GSI

fitting the data without protons and antiprotons

analyzing the deviations

Au-Au 62.4 GeV

Ó

K*0

TECHNISCHE

UNIVERSITÄT

analyzing the deviations – LHC energy

protons are 6 sigma off, but note 6 % overall error, about a factor 2.5 smaller than all previous measurements

could it be weak decays from charm?

weak decays from charmed hadrons are included in the ALICE data sample

at LHC energy, cross sections for charm hadrons is increased by more than an order of magnitude compared to RHC

first results including charm and beauty hadrons indicate changes of less than 3%, mostly for kaons

not likely an explanation

overall systematics, including ALICE data, on proton/pion and kaon/pion ratios

Summary, light flavors (i)

• with more precision data, differences to thermal model 'predictions begin to appear, especially for protons and hyperons. Note that data precision at LHC is about 6% including systematic and statistical errors.

 at RHIC energies, differences of data for different experiments are of the order of the observed deviations, fits including weak decay corrections yield T close to 160 MeV and good chi2

 all thermal model fits at RHIC energies closely follow the systematics established previously

- fits to ALICE data are poor and yield anomalously low T (152 MeV)
- fits to ALICE data excluding protons are excellent and yield T ≈ 164 MeV

Summary, light flavors (ii)

one scenario: flavor chemistry of QGP matter at LHC is established close to T_c as at RHIC but protons and anti-protons are anomalous

- maybe result of annihilation in hadronic phase close to T_c
- modelling annihilation in hadronic phase needs detailed balance (Rapp and Shuryak, Phys.Rev.Lett. 86 (2001) 2980-2983)
- what is the role of the 'quasi-mixed phase' and the asymmetry between protons and hyperons?
- what is the role of the 2x longer QGP lifetime at LHC energy compared to that at RHIC?
- simultaneous description of protons and all hyperons is required to settle
 the issue a challenge to theory

On to hadrons with heavy quarks

specifically, charmonium

can charmonium production be understood in the framwork of the statistical hadronization model?

Charmonium (re)generation models

- statistical hadronization model original proposal: pbm, J. Stachel, Phys. Lett. B490 (2000) 196 assumptions:
 - all charm quarks are produced in hard collisions, N_c const. in QGP
 - all charmonia are dissolved in QGP or not produced before QGP
 - charmonium production takes place at the phase boundary with statistical weights
 - \rightarrow yield ~ N_c² -- quarkonium enhancement at high energies

-- no feeding from higher charmonia

- charm quark coalescence model original proposal: R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C63 (2001) 054905 assumptions:
 - all charm quarks are produced in hard collisions
 - all charmonia are produced in the QGP via charm quark recombination

 \rightarrow yield ~ N_c² -- quarkonium enhancement at high energies Peter Braun-Munzinger

Quarkonium as a probe for deconfinement at the LHC

charmonium enhancement as fingerprint of deconfinement at LHC energy

pbm, J. Stachel Nature 448 (2007) 302-309

350

Comparison of model predictions to RHIC data: rapidity dependence

suppression is smallest at mid-rapidity (90 deg. emission) a clear indication for regeneration at the phase boundary

TECHNISCH

newest ALICE data at central and forward rapidity

GSI

Comparison to PHENIX data

less suppression when increasing the energy density

TECHNIS

Rapidity dependence

TECHNISCH

DARMSTADT

UNIVE

GSI

statistical hadronization model

ALICE data and evolution from RHIC to LHC energy described quantitatively

Summary

- charmonium production a fingerprint for deconfined quarks and gluons
- evidence for energy loss and flow of charm quarks --> thermalization
- charmonium generation at the phase boundary a new process
- first indications for this from psi'/(J/psi) SPS and J/psi RHIC data
- evolution from RHIC to LHC described quantitatively
- charmonium enhancement at LHC deconfined QGP

cartoon Helmut Satz, 2009

back-up

Rapidity dependence of J/psi in statistical hadronization model

Grand Canonical Ensemble

$$\begin{split} \ln Z_i &= \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T)) \\ n_i &= N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp((E_i - \mu_i)/T) \pm 1} \\ \mu_i &= \mu_B B_i + \mu_S S_i + \mu_{I_3} I_i^3 \end{split}$$

for every conserved quantum number there is a chemical potential μ but can use conservation laws to constrain:

• Baryon number: $V \underset{i}{\Sigma} n_i B_i = Z + N \rightarrow V$ • Strangeness: $V \underset{i}{\Sigma} n_i S_i = 0 \rightarrow \mu_S$ • Charge: $V \underset{i}{\Sigma} n_i I_i^3 = \frac{Z - N}{2} \rightarrow \mu_{I_3}$

This leaves only μ_b and T as free parameter when 4π considered for rapidity slice fix volume e.g. by dN_{ch}/dy Fit at each energy provides values for T and μ_b and volume V when fitting yields

Outcome: $N_D = g_c V n_D^{th} I_1 / I_0$ $N_{J/\psi} = g_c^2 V n_{J/\psi}^{th}$ Inputs: T, μ_B , $V = N_{ch}^{exp} / n_{ch}^{th}$, $N_{c\bar{c}}^{dir}$ (pQCD)

