PHENIX Results from the RHIC Energy Scan

Edward O’Brien
Quark Matter 2012
Washington, DC
August 17, 2012
The Physics Motivation

Use the flexibility of RHIC to carry out detailed energy and species scans with the point of determining:

- The evolution from partonic to hadronic matter through the QCD crossover region - QGP transition
- Location, if any, of a critical point on the QCD phase diagram
Physics Results of Energy and Species Scan

- Global variables
- R_{AA}
- Flow
RHIC Run History

12 Years, 12 Runs, 10 Energies, 6 Combination of Species

<table>
<thead>
<tr>
<th>RHIC Run</th>
<th>Year</th>
<th>Species</th>
<th>Energy</th>
<th>Ldt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run-1</td>
<td>2000</td>
<td>Au+Au</td>
<td>130 GeV</td>
<td>1 µb-1</td>
</tr>
<tr>
<td>Run-2</td>
<td>2001-2</td>
<td>Au+Au</td>
<td>200 GeV</td>
<td>24 µb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>19 GeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p+p</td>
<td>200 Gev</td>
<td></td>
</tr>
<tr>
<td>Run-3</td>
<td>2002/3</td>
<td>d+Au</td>
<td>200 GeV</td>
<td>2.74 nb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p+p</td>
<td>200 GeV</td>
<td>0.35 nb-1</td>
</tr>
<tr>
<td>Run-4</td>
<td>2003/4</td>
<td>Au+Au</td>
<td>200 GeV</td>
<td>241 µb-1</td>
</tr>
<tr>
<td>Run-5</td>
<td>2005</td>
<td>Cu+Cu</td>
<td>200 GeV</td>
<td>3 nb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu+Cu</td>
<td>62.4 GeV</td>
<td>0.19 nb-1</td>
</tr>
<tr>
<td>Run-6</td>
<td>2006</td>
<td>p+p</td>
<td>200 GeV</td>
<td>10.7 pb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p+p</td>
<td>62.4 GeV</td>
<td>100 nb-1</td>
</tr>
<tr>
<td>Run-7</td>
<td>2007</td>
<td>Au+Au</td>
<td>200 GeV</td>
<td>813 µb-1</td>
</tr>
<tr>
<td>Run-8</td>
<td>2007/2008</td>
<td>d+Au</td>
<td>200 GeV</td>
<td>80 nb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p+p</td>
<td>200 GeV</td>
<td>5.2 pb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>9.2 GeV</td>
<td></td>
</tr>
<tr>
<td>Run-9</td>
<td>2009</td>
<td>p+p</td>
<td>200 GeV</td>
<td>16 pb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p+p</td>
<td>500 GeV</td>
<td>14 pb-1</td>
</tr>
<tr>
<td>Run-10</td>
<td>2010</td>
<td>Au+Au</td>
<td>200 GeV</td>
<td>1.3 nb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>62.4 GeV</td>
<td>100 µb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>39 GeV</td>
<td>40 µb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>7.7 GeV</td>
<td>260 mb-1</td>
</tr>
<tr>
<td>Run-11</td>
<td>2011</td>
<td>p+p</td>
<td>500 GeV</td>
<td>27 pb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>200 GeV</td>
<td>915 µb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>27 GeV</td>
<td>5.2 µb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au+Au</td>
<td>19.6 GeV</td>
<td>13.7 M events</td>
</tr>
<tr>
<td>Run-12</td>
<td>2012</td>
<td>p+p</td>
<td>200 GeV</td>
<td>9.2 pb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p+p</td>
<td>510 GeV</td>
<td>30 pb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U+U</td>
<td>193 GeV</td>
<td>171 µb-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu+Au</td>
<td>200 GeV</td>
<td>4.96 nb-1</td>
</tr>
</tbody>
</table>

RHIC’s exceptional flexibility has enabled a Physics program of broad scope
Approximately half of RHIC’s running time has contributed in to the energy and species scan studies.
Global Variable $dN/d\eta$

Edward O’Brien
Global Variables $dE_T/d\eta$

Edward O’Brien
Global Variables $\varepsilon_{Bj} \tau$

$$\varepsilon_{Bj} = \frac{1}{A_{\perp}} \tau (dE_T/dy)$$

Edward O’Brien
Uncorrected multiplicity and E_T data for recent U+U and Cu+Au RHIC run superimposed on raw multiplicity and E_T distributions from pp, dAu, CuCu and AuAu data sets
HI collisions that pass close to a QCD critical point might demonstrate observable large fluctuations in correlation lengths of particular global variables.

Correlation length is ξ

Then

Variance: $\sigma^2 = \langle (\Delta N)^2 \rangle \sim \xi^2$

Skewness: $S = \langle (\Delta N)^3 \rangle / \sigma^3 \sim \xi^{4.5}$

Kurtosis: $K = \langle (\Delta N)^4 \rangle / \sigma^4 \sim \xi^7$

The strategy is to vary \sqrt{s} and look for a sudden change in correlation length.

Lattice calculations say we don’t have to hit a bulls eye on the critical point. We just have to come close to see the fluctuations in ξ
- Correlation length related to moments of conserved quantities including net charge
- Correlation length should diverge at the critical point in the phase diagram
Net Charge Moments

They scale as correlation length

![Graphs showing correlation length for different energies and parton numbers.](image)
√s_{NN} Dependence of Net Charge Fluctuations

- Neither K nor S vary with centrality at 7.7, 39, 62.4 and 200 GeV
- Kurtosis vs energy is flat within errors
- Skewness tracks UrQMD prediction
- Analysis of data sets from √s = 19.6, 27 GeV still to be completed
ω Multiplicity fluctuations

ω_{ch,dyn} = \langle N \rangle/\text{var}(N) \text{ corrected for impact parameter fluctuations}

Mean multiplicity fluctuation flat for these 4 collision energies

Analysis of data sets from $\sqrt{s} = 19.6, 27$ GeV still to be completed
Global Variable Summary

- Global analysis of $dN/d\eta$, $dE_T/d\eta$ and ε_{Bj} vs. centrality performed for data sets at $\sqrt{s} = 200, 130, 62.4, 39, 27, 19.6$ and 7.7 GeV
 - Gradual evolution of the quantities with centrality and \sqrt{s} has been observed
 - No obvious non-monotonic behavior at these collision energies
 - U+U data @ $\sqrt{s} = 193$ GeV shows $\sim20\%$ higher $dE_T/d\eta$ and ε_{Bj} than Au+Au 200 GeV data at the most central collisions.
 - Maximum U+U $dN/d\eta$ shows no increase over Au+Au $dN/d\eta$

- Fluctuation analyses have been performed for net charge and multiplicity fluctuations at $\sqrt{s} = 200, 62.4, 39$ and 7.7 GeV
 - No obvious non-monotonic behavior at these collision energies
 - Analysis of data sets from 27 and 19.6 GeV are on the way
From our 2008 paper PRC 101, 162301

Cu+Cu, 0-10% most central

- $\sqrt{s_{NN}} = 22.4$ GeV
- $\sqrt{s_{NN}} = 62.4$ GeV
- $\sqrt{s_{NN}} = 200$ GeV
R_{AA} vs π^0

π^0, Au+Au 40-60%

- 39 GeV
- 62.4 GeV
- 200 GeV

Submitted to PRL arXiv:1204.1526v1

Edward O’Brien
R_{AA} analysis of 27 GeV data is underway

Edward O’Brien
R_{AA} \hspace{1cm} J/ψ

Submitted to PRC arXiv:1208:2251

R_{AA} (200 GeV) PRC 84, 054912 (2011)
Global sys. = \pm 9.2%

R_{AA} (62.4 GeV) = PHENIX data/our estimate
Global sys. = \pm 29.4%

R_{AA} (39 GeV) = PHENIX data/FNAL data
Global sys. = \pm 19%

$J/\psi \rightarrow \mu\mu$, $1.2 < |y| < 2.2$
R_{AA} Summary

• Jet quenching observed in central Au+Au collisions at $\sqrt{s} = 39, 62.4$ GeV is similar to but not as strong as R_{AA} seen in Au+Au 200 GeV data
 – Less suppression as a function of \sqrt{s} vs p_T and centrality
 – $R_{AA} \sim 1$ for mid-peripheral (40-60%) Au+Au 39 GeV
 – Analysis of π^0 R_{AA} for 27 GeV Au+Au is underway

• J/ψ suppression is very similar at all N_{part} for particles produced in collisions of 200, 62.4 and 39 GeV ($1.2 < |y| < 2.2$)
Flow v2, v3 \(\pi, K, p \)
Flow v_2, v_3 \(\pi, K, p \)
NCQ scaling of v_2, v_3

Edward O’Brien
Flow Summary

- New v2 and v3 with PID have been measured in 62.4 and 39 GeV Au+Au data

- 200, 62.4 and 39 GeV PID data shows the same v2, v3 values. Observed flow is saturated in this energy range

- NCQ scaling of v_n for identified charged hadrons, $KE_T/n_q < 1$ GeV observed for the beam energy range of 39–200 GeV confirms partonic flow down to 39 GeV
Conclusions - 1

- A large fraction of the extensive RHIC data set contributes to the energy and species scan
- Data has been analyzed at 7.7, 19.7, 27, 39, 62.4, 130, 193 and 200 GeV
 - A gradual evolution for $dN/d\eta$, $dE_t/d\eta$ and ε_{Bj} vs \sqrt{s} and N_{part}
 - ε_{Bj} of U+U ~ 20% higher than Au+Au
 - No significant increase in the $dN/d\eta$ seen in U+U
- Net charge and multiplicity fluctuation analyses have been performed at 7.7, 39, 62.4 and 200 GeV
 - No non-monotonic behavior observed within sensitivity.
 - Additional data at 27 and 19.6 GeV to be analyzed
- Energy loss similar to that observed in 200 GeV Au+Au R_{AA} is seen in 62.4 and 39 GeV data
 - The energy loss weakens as we decrease \sqrt{s} and centrality
- J/ψ suppression is very similar at all N_{part} for particles produced in collisions of 200, 62.4 and 39 GeV ($1.2 < |y| < 2.2$)
Conclusions - 2

- 200, 62.4 and 39 GeV PID data shows the same v2, v3 values
- NCQ scaling of v_n seen for π, K, p observed in range 39–200 GeV confirms partonic flow down to 39 GeV

Thank You
Back Up
Charged hadron results for v_2, v_3 and v_4 consistent with saturation of identified charged particles v_n for beam energies of 39-200GeV

Edward O’Brien
Excitation plot of v2 and E_T/particle

Edward O’Brien
Global Variables $dE_T/d\eta$
Initial geometry HBT systematics

- System volume from 3D HBT as a analysis function of entropy density
- PHENIX data follow the global linear trend

![Graph showing HBT systematics with data points for various experiments and a trend line.](image-url)

Edward O’Brien