

PHENIX Results from the RHIC Energy Scan

Edward O'Brien Quark Matter 2012 Washington, DC August 17, 2012

The Physics Motivation

Use the flexibility of RHIC to carry out detailed energy and species scans with the point of determining:

- The evolution from partonic to hadronic matter through the QCD crossover region - QGP transition
- Location, if any, of a critical point on the QCD phase diagram

PHKENIX Physics Results of Energy and Species Scan

- Global variables
- R_{AA}
- Flow

RHIC Run History

12 Years, 12 Runs, 10 Energies, 6 Combination of Species

RHIC's exceptional flexibility has enabled a Physics program of broad scope

RHIC Run	Year	Species	Energy	Ldt
Run-1	2000	Au+Au	130 GeV	1 μ b-1
Run-2	2001-2	Au+Au	200 GeV	24 μb-1
		Au+Au	19 GeV	
		p+p	200 Gev	150 nb-1
Run-3	2002/3	d+Au	200 GeV	2.74 nb-1
		p+p	200 GeV	0.35 nb-1
Run-4	2003/4	Au+Au	200 GeV	241 μ b-1
		Au+Au	62.4 GeV	9 μb-1
Run-5	2005	Cu+Cu	200 GeV	3 nb-1
		Cu+Cu	62.4 GeV	0.19 nb-1
		Cu+Cu	22.4 GeV	2.7 μ b-1
Run-6	2006	p+p	200 GeV	10.7 pb-1
		p+p	62.4 GeV	100 nb-1
Run-7	2007	Au+Au	200 GeV	813 μb-1
Run-8	2007/2008	d+Au	200 GeV	80 nb-1
		p+p	200 GeV	5.2 pb-1
		Au+Au	9.2 GeV	
Run-9	2009	p+p	200 GeV	16 pb-1
		p+p	500 GeV	14 pb-1
Run-10	2010	Au+Au	200 GeV	1.3 nb-1
		Au+Au	62.4 GeV	100 μ b-1
		Au+Au	39 GeV	40 μ b-1
		Au+Au	7.7 GeV	260 mb-1
Run-11	2011	p+p	500 GeV	27 pb-1
		Au+Au	200 GeV	915 μ b-1
		Au+Au	27 GeV	5.2 μb-1
		Au+Au	19.6 GeV	13.7 M events
Run-12	2012	p+p	200 GeV	9.2 pb-1
		p+p	510 GeV	30 pb-1
		U+U	193 GeV	171 μ b -1
		Cu+Au	200 GeV	4.96 nb-1

RHIC Run History

12 Years, 12 Runs, 10 Energies, 6 Combination of Species

Approximately half of RHIC's running time has contributed in to the energy and species scan studies

RHIC Run	Year	Species	Energy	Ldt
Run-1	2000	Au+Au	130 GeV	1 μ b-1
Run-2	2001-2	Au+Au	200 GeV	24 μb-1
		Au+Au	19 GeV	
		p+p	200 Gev	150 nb-1
Run-3	2002/3	d+Au	200 GeV	2.74 nb-1
		p+p	200 GeV	0.35 nb-1
Run-4	2003/4	Au+Au	200 GeV	241 μb-1
		Au+Au	62.4 GeV	9 μ b-1
Run-5	2005	Cu+Cu	200 GeV	3 nb-1
		Cu+Cu	62.4 GeV	0.19 nb-1
		Cu+Cu	22.4 GeV	2.7 μ b-1
Run-6	2006	p+p	200 GeV	10.7 pb-1
		p+p	62.4 GeV	100 nb-1
Run-7	2007	Au+Au	200 GeV	813 μb-1
Run-8	2007/2008	d+Au	200 GeV	80 nb-1
		p+p	200 GeV	5.2 pb-1
		Au+Au	9.2 GeV	
Run-9	2009	p+p	200 GeV	16 pb-1
		p+p	500 GeV	14 pb-1
Run-10	2010	Au+Au	200 GeV	1.3 nb-1
		Au+Au	62.4 GeV	100 μb-1
		Au+Au	39 GeV	40 μb-1
		Au+Au	7.7 GeV	260 mb-1
Run-11	2011	p+p	500 GeV	27 pb-1
		Au+Au	200 GeV	915 μb-1
		Au+Au	27 GeV	5.2 μb-1
		Au+Au	19.6 GeV	13.7 M events
Run-12	2012	p+p	200 GeV	9.2 pb-1
		p+p	510 GeV	30 pb-1
		U+U	193 GeV	171 μb-1
		Cu+Au	200 GeV	4.96 nb-1

Global Variable dN/dŋ

Global Variables $dE_T/d\eta$

Global Variables $\epsilon_{Bj} \tau$

$$\varepsilon_{\rm Bi} = 1/A_{\perp}\tau(\rm dE_T/\rm dy)$$

A Look at New "Raw" Data

Uncorrected multiplicity and E_T data for recent U+U and Cu+Au RHIC run superimposed on raw multiplicity and E_T distributions from pp, dAu, CuCu and AuAu data sets

J. Mitchell Friday 7B

HI collisions that pass close to a QCD critical point might demonstrate observable large fluctuations in correlation lengths of particular global variables.

Correlation length is ξ

Then

Variance : $\sigma^2 = \langle (\Delta \mathcal{N})^2 \rangle \sim \xi^2$ Skewness: $S = \langle (\Delta \mathcal{N})^3 \rangle / \sigma^3 \sim \xi^{4.5}$ Kurtosis: $K = \langle (\Delta \mathcal{N})^4 \rangle / \sigma^4 \sim \xi^7$

The strategy is to vary \sqrt{s} and look for a sudden change in correlation length

Lattice calculations say we don't have to hit a bulls eye on the critical point. We just have to come close to see the fluctuations in ξ

Net Charge Distributions

• Correlation length related to moments of conserved quantities including net charge

• Correlation length should diverge at the critical point in the phase diagram

Net Charge Moments

$\sqrt{\mathbf{s}_{NN}}$ Dependence of Net Charge Fluctuations

- Neither \mathcal{K} nor S vary with centrality at 7.7, 39, 62.4 and 200 GeV
- Kurtosis vs energy is flat within errors
- Skewness tracks UrQMD prediction
- Analysis of data sets from
- $\sqrt{s} = 19.6$, 27 GeV still to be completed

ω_{ch,dyn} = <N>/var(N) corrected for impact parameter fluctuations

Mean multiplicity fluctuation flat for these 4 collision energies

Global Variable Summary

- Global analysis of dN/d η , dE_T/d η and ε_{Bj} vs. centrality performed for data sets at $\sqrt{s} = 200, 130, 62.4, 39, 27, 19.6$ and 7.7 GeV
 - Gradual evolution of the quantities with centrality and \sqrt{s} has been observed
 - No obvious non-monotonic behavior at these collision energies
 - U+U data @ $\sqrt{s} = 193$ GeV shows ~20% higher dE_T/d η and ε_{Bj} than Au+Au 200 GeV data at the most central collisions.
 - Maximum U+U dN/d η shows no increase over Au+Au dN/d η
- Fluctuation analyses have been performed for net charge and multiplicity fluctuations at $\sqrt{s} = 200, 62.4, 39$ and 7.7 GeV
 - No obvious non-monotonic behavior at these collision energies
 - Analysis of data sets from 27 and 19.6 GeV are on the way

From our 2008 paper PRC 101, 162301

Submitted to PRL arXiv:1204.1526v1

R_{AA} analysis of 27 GeV data is underway

Submitted to PRC arXiv:1208:2251

- Jet quenching observed in central Au+Au collisions at $\sqrt{s} = 39$, 62.4 GeV is similar to but not as strong as R_{AA} seen in Au+Au 200 GeV data
 - Less suppression as a function of $\sqrt{s}\,\,vs\,p_T$ and centrality
 - $R_{AA} \sim 1$ for mid-peripheral (40-60%) Au+Au 39 GeV
 - Analysis of $\pi^0 R_{AA}$ for 27 GeV Au+Au is underway
- J/psi suppression is very similar at all N_{part} for particles produced in collisions of 200, 62.4 and 39 GeV (1.2 < |y| < 2.2)

NCQ scaling of v2, v3

Flow Summary

- New v2 and v3 with PID have been measured in 62.4 and 39 GeV Au+Au data
- 200, 62.4 and 39 GeV PID data shows the same v2, v3 values. Observed flow is saturated in this energy range
- NCQ scaling of v_n for identified charged hadrons, $KE_T/n_q < 1$ GeV observed for the beam energy range of 39–200 GeV confirms partonic flow down to 39 GeV

Conclusions - 1

- A large fraction of the extensive RHIC data set contributes to the energy and species scan
- Data has been analyzed at 7.7, 19.7, 27, 39, 62.4, 130, 193 and 200 GeV
 - A gradual evolution for dN/d\eta, $dE_T\!/d\eta$ and ϵ_{Bj} vs \sqrt{s} and N_{part}
 - ϵ_{Bj} of U+U ~ 20% higher than Au+Au
 - No significant increase in the $dN/d\eta$ seen in U+U
- Net charge and multiplicity fluctuation analyses have been performed at 7.7, 39, 62.4 and 200 GeV
 - No non-monotonic behavior observed within sensitivity.
 - Additional data at 27 and 19.6 GeV to be analyzed
- Energy loss similar to that observed in 200 GeV Au+Au R_{AA} is seen in 62.4 and 39 GeV data
 - The energy loss weakens as we decrease \sqrt{s} and centrality
- J/ ψ suppression is very similar at all N_{part} for particles produced in collisions of 200, 62.4 and 39 GeV (1.2 < |y| < 2.2)

Conclusions - 2

- 200, 62.4 and 39 GeV PID data shows the same v2, v3 values
- NCQ scaling of v_n seen for π , K, p observed in range 39–200 GeV confirms partonic flow down to 39 GeV

Thank You

Back Up

v _{2,3,4} of Charged Hadrons vs \sqrt{s}

• Charged hadron results for v_2 , v_3 and v_4 consistent with saturation of identified charged particles v_n for beam energies of 39-200GeV

Excitation plot of v2 and E_T/particle

Global Variables dE_T/dη

- System volume from 3D HBT as a analysis function of entropy density
- PHENIX data follow the global linear trend

HBT

