Unexpected connections: hot quark matter, black holes and string theory

Paul Chesler

Massachusetts Institute of Technology
Black holes & fluid mechanics

Black holes

Fluids

Dynamics governed by gravity
Dynamics governed by hydrodynamics
Black holes & fluid mechanics

Black holes

Fluids

Dynamics governed by gravity Dynamics governed by hydrodynamics
Black holes & fluid mechanics

Black holes

Fluids

Dynamics governed by gravity

Dynamics governed by hydrodynamics

Connection comes from string theory and holographic principle.
Holographic principle

Hologram:
2D image containing 3D information
Holographic principle:
Information thrown in BH encoded in surface enclosing BH.

(t’ Hooft, Suskind: 93, 94)

Hologram:
2D image containing 3D information
A (or perhaps the) concrete example of the holographic principle

The Maldacena conjecture:
String theory in a 5D “box”
 = quantum theory on “surface” of box.
(Maldacena: 97), (many, many others)

Dictionary:

<table>
<thead>
<tr>
<th>5D object</th>
<th>4D holographic image</th>
</tr>
</thead>
<tbody>
<tr>
<td>strings</td>
<td>quarks & gluons</td>
</tr>
<tr>
<td>EM fields</td>
<td>electric currents</td>
</tr>
<tr>
<td>black holes</td>
<td>liquids</td>
</tr>
</tbody>
</table>

We live here.
A (or perhaps the) concrete example of the holographic principle

The Maldacena conjecture:
String theory in a 5D “box”

= quantum theory on “surface” of box.

(Maldacena: 97), (many, many others)

Dictionary:

<table>
<thead>
<tr>
<th>5D object</th>
<th>4D holographic image</th>
</tr>
</thead>
<tbody>
<tr>
<td>strings</td>
<td>quarks & gluons</td>
</tr>
<tr>
<td>EM fields</td>
<td>electric currents</td>
</tr>
<tr>
<td>black holes</td>
<td>quark-gluon liquid</td>
</tr>
</tbody>
</table>

We live here.
The utility of holography

- Offers new perspective.

- Difficult quantum physics = easy-ish stringy physics.
 - String theory can be approximated with classical gravity!

Same physics that governs astrophysics & cosmology encodes physics of quantum theories!!!
Qualitative similarities between black holes and liquids (I)

Fluid mechanics: Mechanics governing transport of conserved quantities over long distances.

- **Universal**
 - Same physical principles for smoke, magma, milk & coffee, and QGP.

- **Thermodynamic:** Fluids have a temperature & entropy.

- **Dissipative**
 - Longest lifetime excitations = longest wavelength.
Qualitative similarities between black holes and liquids (II)

Classical black holes:

- **Universal dynamics:**
 - Gravitational dynamics only depend on conserved properties of matter that created black hole.

- **Dissipative:**
 - Absorb radiation, long wavelength absorbed slowest.

- **Thermodynamic:** Black holes have a temperature & entropy.
Qualitative similarities between black holes and liquids (III)

Late times: spreading out of conserved quantities falling into event horizon.
Qualitative similarities between black holes and liquids (III)

Late times: spreading out of conserved quantities falling into event horizon.

Holographic charge density = flux of electric field through surface.
Qualitative similarities between black holes and liquids (III)

Late times: spreading out of conserved quantities falling into event horizon.

Holographic charge density = flux of electric field through surface.
Two very difficult problems in quantum theory

Heavy ion collisions

$\text{time} \quad \longleftrightarrow \quad t_{\text{liquid}} \sim 1 \text{ fm/c} \quad \longleftrightarrow \quad \text{liquid}$

Experimental observations:

1. Rapid “hydrodynamization.”

2. QGP has extremely small viscosity.
Just how fast and how small?

Hydrodynamization time:

![Earth and Moon](image)

4×10^5 km

Light travel time ~ 1.3 s.

Viscosity:

![Viscosity graph](image)

A proton

10^{-15} m

Light travel time $\sim t_{\text{hydro}}$.

quark-gluon plasma
Just how fast and how small?

Hydrodynamization time:

Light travel time ~ 1.3 s.

Understanding rapid hydrodynamization & small viscosity from first principles calculations in quantum theory has proven extremely challenging!
A gravitational toy model of heavy ion collisions

All physics — from far-from-equilibrium dynamics to hydrodynamics — encoded in classical 5D gravitational physics.
Hydrodynamization results illustrated

(Chesler & Yaffe, 11)

Energy density

Pressures $\mu z = 0$

Hydrodynamic prediction
Hydrodynamization results illustrated

(Chesler & Yaffe, 11)

Hydrodynamic prediction

For RHIC energies,

\[\mu \sim 2.3 \text{ GeV} \]

and \(t_{\text{hydro}} \sim 0.35 \text{ fm/c} \).
Lower bound on t_{hydro}:

- $t_{\text{hydro}} \gtrsim \text{“size of box”} \sim \frac{1}{T_{\text{QGP}}}$
Lower bound on t_{hydro} from uncertainty principle:

Qualitative argument:

- $t_{\text{hydro}} \bar{\epsilon}_{\text{quark, gluons}} \gtrsim 1$
- $\bar{\epsilon}_{\text{quark, gluons}} \sim T_{\text{QGP}}$
- $\Rightarrow t_{\text{hydro}} \gtrsim \frac{1}{T_{\text{QGP}}}$
Viscosity of QGP from holography

\[\text{viscosity} \propto \text{long wavelength absorption rate} \]

Famous result from holography:

\[\text{viscosity} = \frac{1}{4\pi} \times \text{entropy density} \]

(Kovtun, Policastro, Son, Starinets, 01, 05)
Viscosity of QGP from holography

\[\mu z = 0 \]

\[0 \leq P \leq 0.75 \]

\[-2 \leq \mu t \leq 6 \]

\[0 \leq \mu z \leq 3 \]

Famous result from holography:

\[\text{viscosity} = \frac{1}{4\pi} \times \text{entropy density} \]

(Kovtun, Policastro, Son, Starinets, 01, 05)

A few times smaller than experimental observations!
Concluding remarks

- **Remarkable** connection between black holes, string theory and quark-gluon plasma.
- **Difficult** quantum physics is accessible via classical gravity.
- String theory is **useful**!
Conclusions
Equilibration of sound waves

How does the system approach equilibrium?

• Non conserved quantities: relax ⇨ microscopic.

• Conserved quantities cannot locally disappear. Ex: energy transported via sound waves.

At large distances surviving sound wavelength ⇨ horizon.

• Gravitational description
 • Shooting quark through liquid ⇐ throwing string into black hole.

“Holographic image”

energy density

String ⇐ Black hole

Shooting quark through liquid ⇐ throwing string into black hole.
Equilibration of sound waves

How does the system approach equilibrium?

- Non conserved quantities:
 - Relaxation at microscopic scales.

- Conserved quantities cannot locally disappear:
 - Example: energy transported via sound waves.

- At large distances, surviving sound wavelength:
 - Surviving sound wavelength.

Gravitational description:

- Shooting quark through QGP (Quark Gluon Plasma) is equivalent to throwing string into black hole.
- String emits full spectrum of radiation.
 - Short wavelength absorption:
 - Infall horizon radius.
 - Long wavelength absorption:
 - Absorbed wavelength $\lambda \propto \frac{1}{M}$, where M is the black hole mass.

All dynamics – from far from equilibrium quantum dynamics to hydrodynamics – is encoded in the classical gravitational problem.

"Holographic image" energy density

Shooting quark through liquid \Leftrightarrow throwing string into black hole.
Equilibration of sound waves

• Non conserved quantities:

 - Relaxation of microscopic quantities.

• Conserved quantities cannot locally disappear:
 - Ex: energy transported via sound waves.

• At large distances surviving sound wavelength:

 - Gravitational description:
 - Shooting quark through liquid \rightleftharpoons throwing string into black hole.
 - String emits full spectrum of radiation.
 - Short wavelength absorption: infall \rightarrow horizon radius.
 - Long wavelength absorption: absorb \rightarrow $\frac{1}{2}$ wavelength 2.
 - Gravitational disturbance becomes longer wavelength.

All dynamics — from far from equilibrium quantum dynamics to hydrodynamics is encoded in the classical gravitational problem.

“Holographic image”

Black hole

String

Energy density
FIG. 3: Left—Position space plot of $|x| E(x) / T^3 p$ for $v = \frac{1}{4}$. Right—Position space plot of $|x| S(x) / T^3 p$ for $v = \frac{1}{4}$. The flow lines on the surface are the flow lines of the energy flux $S(x)$. There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly, trailing the quark there is a stream of energy flux which moves in the same direction as the quark. Note the absence of structure in $E(x)$ for distances $|x| > 1 / (\frac{\pi}{T^3 p})$.

FIG. 4: Left—Plot of $|x| E(x) / T^3 p$ for $v = \frac{3}{4}$. Right—Plot of $|x| S(x) / T^3 p$ for $v = \frac{3}{4}$. The flow lines on the surface are the flow lines of $S(x)$. There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly, trailing the quark there is a narrow stream of energy flux which moves in the same direction as the quark. A Mach cone, with opening half angle $\theta_M ~ 50^\circ$ is clearly visible in both the energy density and the energy flux. Near the Mach cone, the bulk of the energy flux flow is orthogonal to the wavefront.
FIG. 3: Left—Position space plot of $|x| E(x) / (T^3 \rho)$ for $v = 1/4$. Right—Position space plot of $|x| S(x) / (T^3 \rho)$ for $v = 1/4$. The flow lines on the surface are the flow lines of the energy flux $S(x)$. There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly, trailing the quark there is a stream of energy flux which moves in the same direction as the quark. Note the absence of structure in $E(x)$ for distances $|x| \geq 1/(\pi T)$.

FIG. 4: Left—Plot of $|x| E(x) / (T^3 \rho)$ for $v = 3/4$. Right—Plot of $|x| S(x) / (T^3 \rho)$ for $v = 3/4$. The flow lines on the surface are the flow lines of $S(x)$. There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly, trailing the quark there is a narrow stream of energy flux which moves in the same direction as the quark. A Mach cone, with opening half angle $\theta_M \approx 50^\circ$ is clearly visible in both the energy density and the energy flux. Near the Mach cone, the bulk of the energy flux flow is orthogonal to the wavefront.