

D⁺_s production at central rapidity in Pb-Pb collisions at 2.76 TeV with the ALICE detector

Quark Matter 2012 13-18 August 2012 Washington DC (USA)

Gian Michele Innocenti for the ALICE Collaboration Turin University- INFN Turin

Overview of the talk

 \Box Physics motivation for the $\mathsf{D}_{\mathsf{s}}^+$ analysis in Pb-Pb collisions

 $\Box D_s^+$ meson reconstruction strategy in ALICE

□ pp at √s = 7 TeV:
 - D_s⁺ p_T differential cross-section
 → it defines the reference for the Pb-Pb analysis
 - D meson ratios

 \Box D_s⁺ meson dN/dp_T and R_{AA} in Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

Summary and conclusions

Physics motivation

 \Box Heavy quarks produced in the early stages of the collisions (high Q²) \rightarrow Effective probe of the high-density medium created in heavy-ion collisions

In-medium energy loss expected smaller for heavy quarks than for light quarks and gluons due to color charge and dead cone effect [1]

$E_{loss}(b) < E_{loss}(c) < E_{loss}(light)$

 \Box The relative yield of D^+_s with respect to non-strange D meson expected to be **enhanced** in Pb-Pb collisions in the intermediate p_T if charm quarks hadronize via **recombination** in the medium [2, 3]

[1] Y. L. Dokshitzer, D. E. Kharzeev, Phys. Lett. B519 (2001) 0.0 [2] I. Kuznetsova, J. Rafelski, Eur.Phys.J.C51:113-133,2007 [3] M. He, R. J. Fries and R. Rapp, arXiv:1204.4442 [nucl-th]

ALICE apparatus and dataset

Central barrel acceptance |η|< 0.9

ALICE apparatus and dataset

System	Energy (TeV)	Ev. analyzed	Luminosity	
рр	7	3 x 10 ⁸	4.8 nb⁻ [⊥]	
Pb-Pb Centrality 0-7.5 %	2.76	1.6 x 10 ⁷	28 µb⁻¹	

Central barrel acceptance |η|< 0.9

D⁺s meson reconstruction strategy in the ALICE central barrel

∂ point

p_(D

$D_{s}^{+} \rightarrow \Phi \pi^{+} \rightarrow K^{+}K^{-}\pi^{+}$ BR= (2.28 ± 0.12)% cτ(D_{s}^{+}) = 150 μm

Invariant mass analysis of fully reconstructed decay topologies originating from displaced decay vertices

Candidate selection common for pp and Pb-Pb

Decay length

Cosine of the pointing angle

Distance of tracks to secondary vertex

 \Box Invariant mass of the φ reconstructed meson

decay length

For Pb-Pb analysis only:

Decay length in the transverse plane (x,y)
Standardized decay length (x,y)
Cosine of the pointing angle (x,y)

Particle identification selection (PID)

20000

10⁻¹

10-2

10⁻³

10-4

10⁻⁵

TPC: identification based on dE/dx:

- N $^{*}\sigma$ compatibility with **Bethe-Bloch curves**

TOF: identification based on difference between the measured time-of-flight $(t_{MEAS} = t_{TOF} - t_{T0})$ and the one expected for a given particle species

Particle identification selection (PID)

20000

15000

10000

5000

-5000

-10000

15000

-20000

0.5

0

expectation for kaon (ps)

Measured TOF

10⁻¹

10-2

10⁻³

10-4

10⁻⁵

TPC: identification based on dE/dx:

- N^{*}σ compatibility with Bethe-Bloch curves **TOF:** identification based on difference between the measured time-of-flight $(t_{MEAS} = t_{TOF} - t_{T0})$ and the one expected for a given particle species

1.5

arXiv: 1203.2160

2

Pb-Pb, vs_{NN}=2.76 TeV

0-20% centrality

2.5

p (GeV/c)

Track compatible with the kaon or pion hypothesis if both its dE/dx and time-of-flight within 3σ from the expected values, with at least one of them satisfying a 2σ cut → Factor > 20 of background reduction in p_T range 4-6 GeV/c in Pb-Pb

proton-proton analysis at 7 TeV

arXiv: 1208.1948

D_s[±] signal in pp collisions

Analysis performed on the 2010 pp sample at 7 TeV
 3 x10⁸ minimum bias events corresponding to an integrated luminosity of 4.8 nb⁻¹

arXiv: 1208.1948

Invariant mass distributions of D_s^{\pm} candidates in 4 p_T intervals from 2 to 12 GeV/c fitted with a Gaussian function (signal) + exponential (background)

Efficiency and B feed-down subtraction

 \square Acceptance x efficiency for prompt D_s^+ and D_s^+ from B feed-down

Higher efficiencies for D_s⁺ from B feed-down due to larger displacement from the primary vertex

Efficiency and B feed-down subtraction

 \square Acceptance x efficiency for prompt D_s^+ and D_s^+ from B feed-down

Higher efficiencies for D_s⁺ from B feed-down due to larger displacement from the primary vertex

 $\Box f_{prompt} \text{ ranges from } 0.93 \text{ to } 0.87 \\ \text{depending on the } p_T \text{ of the } D_s^+ \text{ meson}$

[1] M. Cacciari, M. Greco, P. Nason, JHEP 9805 (1998) 007

D⁺_s p_T-differential cross section in pp at 7 TeV

 pT-differential cross section for prompt Ds⁺ mesons
 Integrated luminosity of 4.8 nb⁻¹
 Described within uncertainties by GM-VFNS[I] calculations (pQCD)

[1] B. A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, arXiv:1202.0439 [hep-ph]

D⁺_s p_T-differential cross section in pp at 7 TeV

D meson ratios

Measured cross sections extrapolated to full p_T range with FONLL

energies and collision systems

 $\gamma_{\rm s} = \frac{2 \, \mathrm{d}\sigma(\mathrm{D}_{\rm s}^+)/\mathrm{d}y}{\mathrm{d}\sigma(\mathrm{D}^0)/\mathrm{d}y + \mathrm{d}\sigma(\mathrm{D}^+)/\mathrm{d}y}$

D meson ratios

Measured cross sections extrapolated to full p_T range with FONLL

Experimental results compared to predictions from PYTHIA [I] and Statistical Hadronization Model (SHM) [2]

D meson ratios

Measured cross sections extrapolated to full p_T range with FONLL

energies and collision systems

Experimental results compared to predictions from PYTHIA [1] and Statistical Hadronization Model (SHM) [2]

[1] T. Sjostrand, S. Mrenna, P. Skands, JHEP 05 (2006) 026

[2] A. Andronic, F. Beutler, P. Braun-Munzinger, K. Redlich and J. Stachel, Phys. Lett. B 678 (2009) 305

Pb-Pb analysis at 2.76 TeV

Ds[±] signal in central Pb-Pb collisions

Analysis performed on the 2011 Pb-Pb sample at 2.76 TeV
 I.6 x10⁷ events in the 0-7.5 % centrality range corresponding to an integrated luminosity of 28 µb⁻¹

Invariant mass distributions of D_s^{\pm} candidates in 3 p_T intervals from 4 to 12 GeV/c fitted with a Gaussian function (signal) + exponential (background)

Ds[±] signal in central Pb-Pb collisions

Analysis performed on the 2011 Pb-Pb sample at 2.76 TeV
 I.6 x10⁷ events in the 0-7.5 % centrality range corresponding to an integrated luminosity of 28 µb⁻¹

Invariant mass distributions of D_s^{\pm} candidates in 3 p_T intervals from 4 to 12 GeV/c fitted with a Gaussian function (signal) + exponential (background)

Same PID approach adopted for the pp analysis

Efficiency and B feed-down subtraction

 D_s^+ and D_s^+ from B feed-down

Efficiency lower by a factor 5-10
 with respect to pp due to the tighter selection applied

Feed down subtraction

Similar approach as for the pp analysis □ FONLL prediction □ MC efficiencies

+ Hypothesis on the R_{AA} of D_s⁺ from B:

- central value assuming $R_{AA} (D_s^+ \text{ from } B) = R_{AA} (\text{prompt } D_s^+)$
- Systematic uncertainties from the variation of the hypothesis
 I/3 < R_{AA} (D from B)/R_{AA} (prompt D)<3

Systematic uncertainties for D⁺_s in Pb-Pb

Summary plot of systematic uncertainty contributions (feed-down from B excluded)

D Systematic uncertainties from B-feed down on R_{AA} as a function of the different hyphotesis on the R_{AA} feeddown in the range considered (1/3 < R_{AA} (D from B)/R_{AA} (prompt D)<3)</p>

dN/dpT in Pb-Pb and pp

□ dN/dp_T in Pb-Pb collisions at 2.76 TeV compared to the pp reference

pp reference obtained from the measured cross section at 7 TeV by:

- scaling to 2.76 TeV using FONLL
- multiplying by the nuclear overlap function <T_{AA}>

ALI-PREL-32426

First measurement of $D_{s}^{+} R_{AA}$ in heavy-ion collisions

Pb-Pb collisions at 2.76 TeV in the centrality range 0-7.5 %

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle T_{\rm AA} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

Large statistical and systematic uncertainties with the present data sample

First measurement of $D_{s}^{+} R_{AA}$ in heavy-ion collisions

Pb-Pb collisions at 2.76 TeV in the centrality range 0-7.5 %

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle T_{\rm AA} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

Large statistical and systematic uncertainties with the present data sample

□ Strong suppression observed \approx 3-5 for pT 8-12 GeV/c (similar to the non-strange D meson results)

First measurement of D⁺_s R_{AA} in heavy-ion collisions

Pb-Pb collisions at 2.76 TeV in the centrality range 0-7.5 %

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle T_{\rm AA} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

Large statistical and systematic uncertainties with the present data sample

□ Strong suppression observed \approx 3-5 for pT 8-12 GeV/c (similar to the non-strange D meson results)

 \Box R_{AA} seems to increase at low p_T

 Current data do not allow a conclusive comparison to other D mesons within uncertainties

 $\Box D_s^+$ meson reconstructed in pp and Pb-Pb

pp results interesting for studying strange to non-strange D meson yield in new energy regime.

 $\Box D_s^+$ meson reconstructed in pp and Pb-Pb

pp results interesting for studying strange to non-strange D meson yield in new energy regime.

First measurement of D_s⁺ yield in HI :

- $D_s^+ dN/dp_T$ and $D_s^+ R_{AA}$ measured in 3 intervals of p_T from 4 to 12 GeV/c
- Strong suppression observed for pT 8-12 GeV/c

 $\Box D_s^+$ meson reconstructed in pp and Pb-Pb

pp results interesting for studying strange to non-strange D meson yield in new energy regime.

First measurement of D_s⁺ yield in HI :

- $D_s^+ dN/dp_T$ and $D_s^+ R_{AA}$ measured in 3 intervals of p_T from 4 to 12 GeV/c
- Strong suppression observed for pT 8-12 GeV/c

Intriguing results to be improved with future LHC pp and Pb-Pb runs

See also ALICE Upgrade talk by R. Lemmon

ALICE

= 4.8 nb

GM-VENS

 $\Box D_{s}^{+}$ meson reconstructed in pp and Pb-Pb

pp results interesting for studying strange to non-strange D meson yield in new energy regime.

First measurement of D_s⁺ yield in HI :

- $D_s^+ dN/dp_T$ and $D_s^+ R_{AA}$ measured in 3 intervals of p_T from 4 to 12 GeV/c
- Strong suppression observed for pT 8-12 GeV/c

Intriguing results to be improved with future LHC pp and Pb-Pb runs

See also ALICE Upgrade talk by R. Lemmon

 D_{s}^{+} , pp $\sqrt{s} = 7$ TeV,

10

10²

(ub GeV⁻¹c)

Thank you for your attention!

Backup Slides

D meson ratios in pp at 7 TeV

arXiv: 1208.1948

B feed down subtraction in Pb-Pb analyses

The same approach has been used for the four D mesons studied in ALICE D^{+}_{s} , D^{0} , D^{+} and D^{*+}

Fraction of prompt D_s^+ **mesons** f_{prompt} **estimated as:**

[1] M. Cacciari, M. Greco, P. Nason, JHEP 9805 (1998) 007

Resonant decay channels

ALI-PUB-40188

The D_s^+ decays to the same $KK\pi$ final state via various resonant channels. The two with larger BRs are:

$\Box \mathbf{D}_{s}^{+} \rightarrow \Phi \pi^{+} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \pi^{+}$ $\Box \mathbf{D}_{s}^{+} \rightarrow \mathbf{K}^{*0} \pi^{+} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \pi^{+}$

The possible contribution of the K^{*0} channel has been studied by evaluating the acceptance x efficiency factor for the two channels after topological and PID selections

The K^{*0} channel is strongly suppressed by the requirement on the ϕ mass and by the PID selection

Inner Tracking System

- 6 cilindrical layers of silicon detectors with radii from 3.9 to 43.0 cm
- two innermost layer are equipped with Silicon Pixel Detectors with radii 3.9 and 7.6 cm
- ITS has coverage |η|< 0.9 (1.98 for SPD)

Main goals:

- primary and secondary vertex reconstruction with high resolution required for the detection of open charm and beauty
- ➡ measurement with resolution better than 100 µm of the impact parameter of the tracks
- ➡ reconstruction and identification of the low momentum tracks with p_T < 200 MeV/c</p>

Time Projection Chamber and Time of Flight Detector

TPC

- 510 cm long cylindrical chamber filled with
 90 m³ of drift volume filled with a gas mixture
- TPC has coverage |η|< 0.9 for tracks with full radial length
- main tracking detector of the ALICE central barrel (from 0.2 to 100 GeV/c)
- particle identification via specific energy deposit

TOF

→ large array area of MRPC that covers the full azimuthal angle and $|\eta| < 0.9$ in pseudorapidity at radii from 370-399 cm

particle identification in the intermediate momentum range via time of flight measurement

 p_T < 2.5 GeV/c for pions and kaons p_T < 4 GeV/c for protons.