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Abstract

We discuss a production of direct photons at large transverse momenta p-. in nuclear collisions at different energies and rapidities corresponding to RHIC and LHC experiments. Direct photons are very
convenient tool for investigation of nuclear effects since they are not expected to be accompanied by any final state interaction, either energy loss or absorption. Therefore, besides the Cronin
enhancement at medium-high p. and small isotopic corrections at larger p., one should not expect any nuclear effects. However, data from the PHENIX experiment at mid-rapidities demonstrate a
significant large-p.. suppression in central d+Au and Au+Au collisions that cannot be induced by coherent phenomena (gluon shadowing, Color Glass Condensate). We demonstrate that such an unexpected
result is a subject to the energy conservation constraints (ECC) in initial state multiple parton interactions. The corresponding suppression factor falls steeply with p. and leads to rather strong
decrease with p. of the nuclear modification factor violating so QCD factorization. In the RHIC kinematic region at forward rapidities we include also coherent phenomena as an additional source of
nuclear suppression. In the LHC energy range ECC effects are irrelevant at mid rapidities, but they are going to be important with increasing rapidity. We study for the first time a relative
contribution of both sources of nuclear suppression at different rapidities performing predictions that could be verified in the future by experiments at RHIC and LHC. We analyze also a contribution
of gluon shadowing as a leading twist shadowing correction modifying nuclear effects especially at small p-.

Proton-proton cross section calculation
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Cross section on the nucleus
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In the long coherence length (LCL) regime the CL ; " Q=p? where Tas(b) = / d*sTu(s)T5(b - s) is nuclear overlap
is much longer than the nuclear radius. In the | - min bias function and integration over impact parameter
LCL limit(RHIC forward rapidity, LHC) the - 2ash b is performed for each centrality class. Gluon
interference (shadowing) effects are maximal i B shadowing added (for p-A and A-B resp.)via [4]
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Energy conservation constraints
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Each of multiple inelastic parton rescatterings leads to effective  rules Performing summation we get
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Quark distribution function in the nucleus can be calculated as a e n! Jefs = S0 rules. The correlation between the projectile distribution
sum over multiple interactions using a probability of n-fold and in case of AB collisions functions and the target results in the QCD factorization
inelastic collision related to the Glauber model via AGK cutting vn(b) = e~ 0ersTan® (0 Tan(®)" £f = 20mb breakdown at forward rapidities.
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Predictions for RHIC at mid and forward rapidity Predictions for LHC at mid and forward rapidity
53 B no effects 3 In case of p(d)A collisions at midrapidity the s& F . I W

onset of isospin effects shows R -> 0.8 at
RHIC at high p. while no effect is expected
at LHC. At midrapidity energy conservation
constraints are negligible at this p. range but 1
they manifest themselves at much higher p.. i
Magnitude of this effect rises with rapidity o
and dominates at high p.. Suppression induced 15
by the gluon shadowing rises from almost 0%  '*
— at n = 0 t0 10% at n = 3 at RHIC and gradually :; |
decreases with p.. At LHC gluon shadowing &
rises from ~ 20% at n=0 to ~ 50% at n = 4 at P:
low p,. Effects of energy conservation are
. __| clearly observable at p. > 30GeV at n=3 -4 o4

1 10 | 10 picevy  and so they can be verified at LHC.
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Conclusions

Using the color dipole approach the study of production of direct photons in collisions on nucleon and nuclear targets in the RHIC and LHC kinematic regions is presented. The cross section for pp
collisions in RHIC kinematics shows good agreement with PHENIX data at midrapidity and also the cross section for pp collisions in LHC kinematics is shown. We present predictions of p. behavior of
nuclear effects at different rapidities. We included coherence effects (quark and gluon shadowing) and corrections for energy conservation constraints in multiple parton rescatterings in our
calculations to evaluate nuclear effects. Since photons are not accompanied by final state interactions, no suppression at high p. is expected(besides an onset of isospin effects). We demonstrate that
the nuclear suppression at small and medium p. is dominated by coherence effects and the suppression at high p. is clearly induced by corrections for energy conservation constraints in initial state
parton rescatterings. Both effects grow strongly with rapidity. Quite strong suppression at high p. that is in contrast with the QCD factorization can be tested by future data from RHIC and LHC.
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