Initial state fluctuations and higher harmonic flow in heavy-ion collisions

Björn Schenke
Physics Department, Brookhaven National Laboratory, Upton, NY

in collaboration with
C. Gale, S. Jeon (McGill), P. Tribedy (VECC), R. Venugopalan (BNL)

August 15 2012
Introduction

- Large elliptic flow has indicated fluid behavior of matter created at RHIC in early 2000’s. BNL announces “perfect liquid” in 2005 press release.
- The importance of fluctuations was realized later and analysis of odd flow harmonics began in 2010 since B. Alver, G. Roland, Phys. Rev. C81, 054905.
- Analysis of all flow harmonics can help determine:
 - Initial state properties
 - Transport properties of the QGP (and hadron gas)
- I will discuss systematics within event-by-event hydrodynamics
 - Present a QCD based model for the initial state including geometric and color charge fluctuations
 - Make first comparisons to experimental data

Initial state fluctuations: MC-Glauber model

To study systematics we use a simple geometric model
Later, we improve significantly on this

- Sample Woods-Saxon distributions to determine all nucleon positions (green and red circles)
- Sample impact parameter b and overlap nuclei

- Nucleon-nucleon collision occurs if distance is $< \sqrt{\sigma_{NN}/\pi}$
- At position of collision add 2D-Gaussian energy density distribution with width σ_0 (blue blobs)
 σ_0 (e.g. 0.4 fm) is a model parameter

Ψ_{PP2} and Ψ_{PP3} are participant planes for ellipticity and triangularity
Hydrodynamic evolution

Given the initial energy density distribution we solve

\[\partial_{\mu} T^{\mu\nu} = 0 \]

\[T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} + \pi^{\mu\nu} \]

using only shear viscosity: \(\pi^{\mu\nu} = 0 \)

initial \hspace{1cm} evolve to \hspace{1cm} ideal \hspace{1cm} \eta/s = 0.16

\[\tau = 6 \text{ fm/c} \]

3+1D event-by-event relativistic viscous hydrodynamic simulation
Flow analysis

After Cooper-Frye freeze-out and resonance decays in each event we compute

\[v_n = \langle \cos[n(\phi - \psi_n)] \rangle \]

with the event-plane angle \(\psi_n = \frac{1}{n} \arctan \left(\frac{\langle \sin(n\phi) \rangle}{\langle \cos(n\phi) \rangle} \right) \)

Sensitivity of event averaged \(v_n \) **on**

viscosity

initial state granularity

Sensitivity to viscosity and initial state structure increases with \(n \)
New model for the initial state

To make use of v_n measurements we need a more rigorous understanding of the initial state and its fluctuations

Gluon saturation \rightarrow strong gluon fields, large occupation numbers at $k_T \leq Q_s$ \rightarrow classical field approximation

Solve classical Yang-Mills equations event-by-event, including geometric and color charge fluctuations
Color charge densities of incoming nuclei

- Sample nucleon positions from **Woods-Saxon** distributions.
- Use **IP-Sat model** fit to HERA data to get $Q_s^2(x, b_\perp)$ for each nucleon. The color charge density squared $g^2\mu^2$ is proportional to Q_s^2.
- Add all $g^2\mu^2(x_\perp)$ in each nucleus to obtain $g^2\mu_1^2(x_\perp)$ and $g^2\mu_2^2(x_\perp)$.

Sample ρ^a from local Gaussian distribution for each nucleus

$$\langle \rho^a(x_\perp)\rho^b(y_\perp) \rangle = \delta^{ab}\delta^2(x_\perp - y_\perp)g^2\mu^2(x_\perp)$$
Gauge fields before the collision

Color currents:

\[J_1^{\nu} = \delta^{\mu+} \rho_1(x^-, x_{\perp}) \]
\[[D_{\mu}, F^{\mu\nu}] = J_1^{\nu} \]

\[J_2^{\nu} = \delta^{\mu-} \rho_2(x^+, x_{\perp}) \]
\[[D_{\mu}, F^{\mu\nu}] = J_2^{\nu} \]

Correlations and fluctuations in the gluon fields:

Shown is the correlator of the Wilson lines

\[C_{(1,2)}(x_{\perp}) = \frac{1}{N_c} \text{Re}[\text{tr}(V(1, 2)^\dagger(0, 0)V(1, 2)(x, y))] \]

The length scale of fluctuations is \(1/Q_s\) - not the nucleon size
Energy density

Solve for gauge fields after the collision in the forward lightcone
Compute energy density in the fields at \(\tau = 0 \) and later times with CYM evolution

Very different initial energy density distributions in the models
MC-KLN: Drescher, Nara, nucl-th/0611017
mckln-3.52 from http://physics.baruch.cuny.edu/files/CGC/CGC_IC.html with defaults, energy density scaling
Energy density

Solve for gauge fields after the collision in the forward lightcone
Compute energy density in the fields at $\tau = 0$ and later times with CYM evolution

Very different initial energy density distributions in the models
MC-KLN: Drescher, Nara, nucl-th/0611017
mckln-3.52 from http://physics.baruch.cuny.edu/files/CGC/CGC_IC.html with defaults, energy density scaling
\(\frac{dN_g}{dy} \) at finite time \(\tau = 0.4 \text{ fm} \) in transverse Coulomb gauge \(\partial_i A^i = 0 \)

\(N_{\text{part}} \) from MC-Glauber with \(\sigma_{NN} = 42 \text{ mb} \) and 64 mb respectively.

Scaled by \(2/3 \) to compare to charged particles.

Some freedom in normalization - will need to account for entropy production.
dN_g/dy at finite time $\tau = 0.4 \text{ fm}$ in transverse Coulomb gauge $\partial_i A^i = 0$.

N_{part} from MC-Glauber with $\sigma_{NN} = 42 \text{ mb}$ and 64 mb respectively.

Scaled by $2/3$ to compare to charged particles.

Some freedom in normalization - will need to account for entropy production.
Multiplicity B. Schenke, P. Tribedy, R. Venugopalan, arXiv:1206.6805

\[P(dN_g/dy) \] at time \(\tau = 0.4 \text{ fm} \) with \(P(b) \) from a Glauber model

Glasma model gives a convolution of negative binomial distributions
No need to put them in by hand
Eccentricities

\[\varepsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2}}{\langle r^n \rangle} \]

Averages are weighted by the energy density

- \(\varepsilon_n \) larger in Glasma model for odd \(n \)
- \(\varepsilon_n \) smaller in Glasma model for \(n = 2 \) (for \(b > 3 \text{ fm} \))
- About equal for \(n = 4 \), larger for \(n = 6 \)
Compute all components of $T^{\mu\nu}$
Determine energy density and (u^x, u^y) at $\tau > 0$ fm from $u_\mu T^{\mu\nu} = \varepsilon u^\nu$ as input for hydrodynamic simulations.

Energy density and (u_x, u_y) at $\tau = 0.4$ fm/c

No instabilities (need full 3+1D Yang-Mills for that): system is far from equilibrium - cannot yet match $\Pi^{\mu\nu}$
Centrality selection and flow

Glasma centrality selection

$P(dN_g/dy)$

$Glasma$ centrality selection

0-5%
5-10%
10-20%
20-30%
30-40%
40-50%
50-60%

Björn Schenke (BNL)
Centrality selection and flow

Glasma centrality selection

P(dN_g/dy)

dN_g/dy

Glasma centrality selection

0-5%
5-10%
10-20%
20-30%
30-40%
40-50%
50-60%

Hydro evolution

MUSIC

ATLAS 20-30%, EP

\tau_{\text{switch}} = 0.2 \text{ fm/c}

\eta/s =0.2

\langle v_n^2 \rangle^{1/2}

p_T [GeV]

Distribution of b in 20-30% central bin

P(b)

b [fm]

\langle v_n^2 \rangle^{1/2}

p_T [GeV]
Centrality selection and flow

Glasma centrality selection

Hydro evolution

MUSIC

Experimental data:
Event-by-event distributions of v_n

comparing to all new ATLAS data:

see talk by Jiangyong Jia in Session 4A, today, 11:20 am

Preliminary results: Statistics to be improved.

Björn Schenke (BNL)
Event-by-event distributions of v_n comparing to all new ATLAS data:
see talk by Jiangyong Jia in Session 4A, today, 11:20 am

Preliminary results: Statistics to be improved.
Event-by-event distributions of v_n

comparing to all new ATLAS data:

see talk by Jiangyong Jia in Session 4A, today, 11:20 am

Preliminary results: Statistics to be improved.
Effect of initial flow

Weak effect of initial flow on hadron $v_n(p_T)$

Expect stronger effect for photon v_n: Photons are mostly produced early at high temperatures

Effect of different switching time $0.4\, \text{fm}/c$ is very weak

Experimental data:
Temperature dependent η/s

$v_n(p_T)$ for given $\eta/s(T)$ indistinguishable from constant $\eta/s = 0.2$

More detailed study needed

Experimental data:
Directed flow v_1

Experimental data:
Summary and conclusions

- Higher flow harmonics are sensitive to viscosity and fluctuating initial states

- **IP-Glasma model**
 - includes geometric and color charge fluctuations
 - produces negative binomial fluctuations
 - has different eccentricities than previous CGC based models
 - provides initial flow profile from the non-equilibrium stage
 - describes flow coefficients up to at least v_5 with $\eta/s = 0.2$

- Initial flow has weak effect on hadronic v_n
 Photon study underway

- Temperature dependent η/s not distinguishable from average η/s

Gauge fields before the collision

Color currents:

\[J_1^\nu = \delta^{\mu+} \rho_1 (x^-, x_\perp) \]
\[[D_\mu, F^{\mu\nu}] = J_1^\nu \]
\[J_2^\nu = \delta^{\mu-} \rho_2 (x^+, x_\perp) \]
\[[D_\mu, F^{\mu\nu}] = J_2^\nu \]

Solution in covariant gauge:

\[A^+_{\text{cov}(1,2)} (x^-, x_\perp) = - \frac{g \rho_{(1,2)} (x^-, x_\perp)}{\nabla_\perp^2 + m^2} \]

with infrared cutoff \(m \) of order \(\Lambda_{\text{QCD}} \).

Solution in light cone gauge:

\[A^+_{(1,2)} (x_\perp) = A^-_{(1,2)} (x_\perp) = 0 \]
\[A^i_{(1,2)} (x_\perp) = \frac{i}{g} V_{(1,2)} (x_\perp) \partial_i V_{(1,2)}^\dagger (x_\perp) \]

\(V \) is the path-ordered exponential of \(A^+_{\text{cov}(1,2)} \)
Gauge fields before the collision

The correlator of the Wilson lines

\[C_{(1,2)}(x_\perp) = \frac{1}{N_c} \text{Re}[\text{tr}(V(1,2)^\dagger(0,0)V(1,2)(x,y))] \]

with

\[V_{(1,2)}(x_\perp) = P \exp \left(-ig \int dx_- \frac{\rho_{(1,2)}(x^-, x_\perp)}{\nabla_\perp^2 + m^2} \right) \]

shows the degree of correlations and fluctuations in the gluon fields.

The length scale of fluctuations is \(1/Q_s\). Not the nucleon size.
Gauge fields after the collision (Glasma)

Initial condition on the lightcone: require that fields match smoothly on the lightcone.

Solution:

\[A^i_\mu |_{\tau=0} = A^i_\mu \big|_{(1)} + A^i_\mu \big|_{(2)} \]

\[A^\eta_\mu |_{\tau=0} = \frac{ig}{2} [A^i_\mu \big|_{(1)}, A^i_\mu \big|_{(2)}] \]

On the lattice the Wilson lines in the future lightcone are obtained from the condition:

\[\text{tr} \left\{ t^a \left[\left(U^i_\mu (1) + U^i_\mu (2) \right) \left(1 + U^i_\mu (3) \right) - \left(1 + U^i_\mu (3) \right) \left(U^{i\dagger}_\mu (1) + U^{i\dagger}_\mu (2) \right) \right] \right\} = 0 \]

where \(t^a \) are the generators of \(SU(N_c) \) in the fundamental representation. Solve iteratively.

\[U^i_{(1,2),j} = V^i_{(1,2),j} V^{i\dagger}_{(1,2),j} + \epsilon_i \] (gauge transform of 1: pure gauge)
Negative binomial fluctuations

Fluctuations in the total energy per unit rapidity produce negative binomial distribution (NBD).

\[P(n) = \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\bar{n}^nk^k}{(\bar{n}+k)^{n+k}} \]

Good, since multiplicity in pp collisions can be described well with NBD.

In AA, convolution of NBDs at all impact parameters describes data well too.

P. Tribedy and R. Venugopalan

MC-KLN does not do that - these fluctuations need to be put in by hand.

see Dumitru and Nara arXiv:1201.6382
Negative binomial fluctuations

Extract \(k \) and \(\bar{n} \) using a fit with

\[
P(n) = \frac{\Gamma(k + n)}{\Gamma(k)\Gamma(n + 1)} \frac{\bar{n}^n k^k}{(\bar{n} + k)^{n+k}}
\]

at fixed impact parameters.

Ratio of \(k/\bar{n} \) is \(> 1 \) for small \(b \) and becomes small \(\sim 0.14 \) for large \(b \).

That is close to the value extracted for \(p + p \) collisions: Dumitru and Nara arXiv:1201.6382
NBDs and Glasma flux tubes

Glasma flux tube picture:

\[k = \zeta \frac{N_c^2 - 1}{2\pi} Q_s^2 S_\perp \]

Width of NBD is inversely proportional to the number of flux tubes \(Q_s^2 S_\perp \).

\(S_\perp = \) interaction area.

B.Schenke, P.Tribedy, R.Venugopalan, arXiv:1206.6805

\(\zeta \) should be close to constant in the flux tube picture.
NBDs and Glasma flux tubes

ζ is not constant because geometric fluctuations are very important. Were not considered in the derivation of

$$k = \zeta \frac{N^2_c - 1}{2\pi} Q_s^2 S_\perp$$

Eliminate by using smooth nucleon distributions:

![Graph showing the relationship between ζ and $Q_s^2 S_\perp$.]

B.Schenke, P.Tribedy, R.Venugopalan, arXiv:1206.6805
More centrality classes: IP-Glasma + MUSIC

\[\langle v_n \rangle^{1/2} \]

\[p_T \text{ [GeV]} \]

\[\eta/s = 0.2 \]

\[\tau_{\text{switch}} = 0.2 \text{ fm/c} \]

ATLAS 0-5%, EP

ATLAS 10-20%, EP

ATLAS 30-40%, EP

ATLAS 40-50%, EP
Using $\eta/s = 0.16$ overestimates all v_n

Experimental data: