

Anisotropic flow of ϕ meson in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ALICE detector

You Zhou for the ALICE collaboration Nikhef and Utrecht University Email : <u>you.zhou@cern.ch</u>

Universiteit Utrecht

Motivation

- The main goal of the heavy-ion program at the LHC is the creation of the Quark Gluon Plasma (QGP) and the study of its properties.
- Anisotropic flow, especially elliptic flow (v_2) , is an observable which is sensitive to the properties of this matter.
- ϕ meson flow is an important experimental probe:
 - assuming a smaller hadronic cross section, -> reflects the partonic collectivity
 - has a large mass,
 - -> test the mass splitting picture of differential flow
 - -> study the hydrodynamic behavior
 - carries two strange quarks,
 - -> check/confirm the NQ scaling picture built at RHIC energies

\phi reconstruction

- The combinatorial background is subtracted using the distribution of like-sign kaon pairs.
- ✤ a polynomial fit used to remove the residual background,
 - the 2nd and 3rd polynomial functions has been tested.
- Soth Breit-Wigner and Voigtian functions are applied to fit the spectrum. The differences between extracted v_2 is used to estimate the systematic errors.

v₂ versus invariant mass method

We extract the ϕ meson v₂, fitting the v₂ of kaon pairs v₂^T(m_{inv}) with ** invariant mass method²:

$$v_2^T(m_{inv}) = v_2^S \frac{N^S}{N^T}(m_{inv}) + v_2^B(m_{inv}) \frac{N^B}{N^T}(m_{inv})$$
(1)

- the yields N^{S} , N^{B} are obtained from the fits to the ϕ meson invariant mass distribution.
- the $v_2^T(m_{inv})$ are measured by Q-Cumulant³ (v_2 {2}), Scalar Product⁴ $(v_2{SP})$ and Event Plane⁵ $(v_2{EP})$ methods.
- v_2 of background is parameterized with the polynomial function.

Centrality dependence of ϕ meson v₂

- A good agreement is observed among $v_2{2}$, $v_2{SP}$ and $v_2{EP}$ measurements.
- There is a clear centrality dependence of ϕ meson v₂.
- $\mathbf{k} \mathbf{\phi}$ meson \mathbf{v}_2 is compared with viscous hydrodynamic model calculations. The theoretical predictions slightly overestimate the ϕ meson v₂ measurements.
- Adding the phase of hadronic rescattering into the hydrodynamic model calculations may improve the agreement with measured ϕ meson v₂.

Comparisons with ϕ **meson** v_2 at **RHIC**

Mass splitting and number of quark scaling

 \mathbf{v}_{2} $\mathbf{\phi}$ meson \mathbf{v}_{2} at the LHC is pushed toward higher \mathbf{p}_{T} . This might indicate a stronger radial flow produced at the LHC energy. $\diamond \phi$ meson reveals a behavior similar to antiprotons at low p_{τ} (mass splitting) but similar to pion at high p_{τ} (number of quark).

We don't observe a clear number of quark scaling picture.

Conclusions

- Elliptic flow of ϕ meson is measured in $\sqrt{s_{NN}} = 2.76$ TeV Pb-Pb collisions with the ALICE detector.
 - hydrodynamic calculations slightly overestimate the ϕ meson v₂ ullet
 - comparison with STAR measurements indicate a stronger radial flow • produced at LHC energy.
 - ϕ meson flow follows the mass splitting at low p_{τ} and follows meson's flow • at intermediate p_{T} , but there is no clear scaling with the number of quarks observed at intermediate p_{τ} region.
- ¹ J.Y. Ollitrault, Phys. Rev. D **46** 229 (1992)
- ² N. Borghini and J. Y.Ollitrault, Phys. Rev. C **70**, 064905 (2004).
- ³ A. Bilandzic, R. Snellings and S. Voloshin, Phys. Rev. C 83, 044913 (2011)
- ⁴ C. Adler et al. (STAR Collaboration), Phys. Rev. C 66, 034904 (2002)
- ⁵ A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998)
- ⁶ S.S. Shi (for STAR Collaboration), Nucl. Phys. A, **862**, 263c (2011)