# D meson v<sub>2</sub> measurement with Q-Cumulants and Scalar Product methods in Pb-Pb collisions at √s<sub>NN</sub>=2.76 TeV with the ALICE experiment





Grazia Luparello\* for the ALICE Collaboration

NIKHEF and Utrecht University, mail: Grazia.Luparello@cern.ch



#### **Motivations**

- ◆In non-central heavy-ion collisions the overlap region features a geometric anisotropy.
- ◆Pressure gradients convert it into momentum anisotropy, reflected in the azimuthal distribution of final particles:



$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} + \frac{N_0}{\pi} \sum_{n=0}^{\infty} v_n \cos(n(\varphi - \psi_n))$$

where  $\psi_n$  is the n-th order symmetry plane and  $v_2$  is the anisotropic flow parameter.

- ightharpoonupThe measurement of open charm  $v_2$  can help in understanding the properties of the produced medium:
  - -At low  $p_T$  the collective flow is due to the pressure gradients and is sensitive to the degree of thermalization of the c quark in the medium.
  - -At **high**  $p_T$   $v_2$  is sensitive to the path length dependence of heavy quark energy loss.

# Open-charm reconstruction in ALICE

◆D mesons hadronic decays are reconstructed in Inner Tracking System (ITS), Time Projection Chamber (TPC) and Time Of Flight (TOF) detectors in the central rapidity region from their hadronic decay channels:



- D<sup>0</sup>→K<sup>-</sup>+π<sup>+</sup> (BR=3.87±0.5%,  $c\tau \approx 312 \mu m$ )
- D\*+→D0+π+ (BR=67.7±0.5%)
- The D mesons are reconstructed from an invariant mass analysis of fully reconstructed decay topologies displaced with respect to the primary vertex.
  - ◆In case of D\*+ which decays at the primary vertex, D<sup>0</sup> candidates are attached to  $\pi$  candidate tracks from the primary vertex.
  - ◆Background with same topology as signal is suppressed by using topological selections and particle identification in TPC and TOF.

### Data sample

- 7\*10<sup>6</sup> events in 30-50% centrality for D\*+,
- 8.9\*106 events in 30-50% for D0,
- 7.1\*10<sup>6</sup> events in 15-30% for D<sup>0</sup>.

#### 2-Particle correlation methods

#### ◆Scalar product (SP)<sup>[1]</sup>

Allows for  $\Delta \eta$  separation between particles of interest (POI) and reference particles (RP) suppressing non-flow correlations. For this analysis, RPs are TPC tracks and no Δη gap is used since with the present statistics the measurement is not sensitive

$$v_{2,SP} = \frac{\langle \mathbf{u} \cdot Q \rangle}{\sqrt{\langle Q_a \cdot Q_b \rangle}}$$

a,b denote two sub-events

$$Q = \sum_{j=1}^{M_{RP}} \exp^{i2\phi_j} \longrightarrow Q$$
-vector

 $u = e^{i2\phi}$  Unity vector of the D

#### ◆Q-Cumulants (QC)<sup>[2]</sup>

to non-flow contribution.

In principle, increasing the number of particles involved in the correlation it is possible to reduce

$$v_{2,QC} = \sqrt{\langle \sum_{i \neq j}^{M} \frac{\mathbf{u}_i \cdot \mathbf{u}_j}{P_{M,2}} \rangle}$$

 $(P_{M,2} = normalization factor)$ 

non-flow and flow-fluctuations. D meson analysis is statisticslimited and allows only for 2-particles cumulant.

## D<sup>0</sup> and D\*+ v<sub>2</sub> measurement

- ♦D meson candidates are reconstructed in bins of η,  $p_T$  and mass.
- ◆Independent particle correlations are calculated for each bin.
- ♦ The  $v_2$  of D mesons ( $v_2$ <sup>S</sup>) is obtained by using the expression:

$$v_2^{\text{meas}}(x) = \frac{N^{\text{S}}}{N^{\text{S}} + N^{\text{B}}} v_2^{\text{S}}(x) + \frac{N^{\text{B}}}{N^{\text{S}} + N^{\text{B}}} v_2^{\text{B}}(x)$$

 $N^{\rm S}$  candidates in the signal region,  $N^{\rm B}$  candidates in the background region,  $v_2^S = v_2$  of the signal,  $v_2^B = v_2$  of the background

- ightharpoonupThe  $v_2^B$  subtraction and the  $N^S$  and  $N^B$  evaluation is obtained by a simultaneous fit of the counts and  $v_2$  as a function of invariant mass.
  - Same method for v<sub>2</sub> extraction is applied to both D<sup>0</sup> and D\*+ and to QC and SP methods.

### Systematic uncertainties

- →Main systematic uncertainties taken into account are:
  - Yield extraction (estimated by changing the background fit function and the fit range).
  - Different sets of topological cuts for D meson selection.
- Use of different centrality estimators.
- ◆The total systematic is ~20%.
- ◆In addition a systematic uncertainty to account for the feed-down from B meson decays (~15%) is estimated based on FONLL calculations and an hypothesis on the  $v_2$  and  $R_{AA}$  of the feed-down component.

# **Examples of simultaneous fits**





#### **Results and Conclusions**

- $\bullet$ QC and SP methods have been used to measure the D<sup>0</sup>  $v_2$  in CC 15-30% and 30-50% and the D\*+  $v_2$  in CC 30-50%.
- ◆The measurements are consistent with each other and with those based on the event plane method.

◆The results are also consistent between D<sup>0</sup> and D\*+.

♦ The results indicate  $v_2^D > 0$  in  $2 < p_T < 6$  GeV/c for the 30-50% centrality class (3σ effect).







#### References

1) C. Adler et al. (STAR Collaboration), Phys. Rev. C66, 034904 (2002)

See D. Caffarri talk

2) A.Bilandzic, R. Snellings and S. Valoshin, Phys. Rev. C83, 044913 (2011)