The Relativistic Heavy Ion Collider (RHIC) is built to search for the Quark-gluon Plasma (QGP) and to study its properties in laboratory through high energy heavy-ion collisions. J/ψ suppression in heavy-ion collisions due to color screening of quark and anti-quark has been proposed as a signature of QGP formation. But other mechanisms are likely to contribute to the observed J/ψ suppression in heavy-ion collisions such as the cold nuclear matter effect, charm quark recombination, sequential suppression, and hot wind dissociation. Measurements of J/ψ invariant yields at different collision centralities can shed new light on understanding the interplay of these mechanisms for J/ψ production and medium properties.

In this presentation we report the measurements of J/ψ suppression in Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV and 39 GeV from STAR with full Time-Of-Flight detector and Barrel ElectroMagnetic Calorimeter detector in operation. Centrality dependence of J/ψ yields at 62.4 GeV and 39 GeV taken in 2010 by STAR has a large acceptance for electron identification after the full Time-Of-Flight (TOF) has been installed. Large data samples in 2010:

- 30M EMC triggered (E > 2.6 GeV) 62 GeV Au+Au events (37 μb$^{-1}$)
- 168M MB 62GeV Au+Au events (18 μb$^{-1}$)
- 34M EMC triggered (E > 2.6GeV) 39 GeV Au+Au events (62 μb$^{-1}$)
- 258M MB 39GeV Au+Au events (30 μb$^{-1}$)

Electron ID

Low p_T TPC + TOF is sufficient

- EMC for fast trigger of high-p_T electrons
- Adc0 is the offline ad value of the most energetic tower in a TPC cluster
- p_T suppresses hadrons
- further suppression from SMD
- combine with dE/dx from TPC

SMD: Shower Maximum Detector

$\Delta x \times \Delta p = 0.005 \times 0.005$ at $-3X_b$

Detect shower size and shower position

J/ψ signal in Au+Au 62 GeV

- Invariant mass distribution for 1+$p_T < 2$ GeV/c at centrality 0 – 60%
- Invariant mass distribution for 2+$p_T < 3$ GeV/c at centrality 0 – 60%
- Invariant mass distribution for 3+$p_T < 4$ GeV/c at centrality 0 – 60%

J/ψ signal in Au+Au 39 GeV

- Invariant mass distribution at centrality 0 – 60%

Summary and outlook

1. We observe clear J/ψ signals at different p_T and centrality bins from Au+Au collisions at 62 and 39 GeV.
2. Estimation of efficiencies is ongoing.
3. Estimation of systematic uncertainty is in progress.
4. Measurement of J/ψ R_A for different centrality and energy will be done in the future.