

J/ ψ production in Au+Au collisions at $\sqrt{S_{NN}} = 62.4$ GeV and 39GeV from STAR

Wangmei Zha for the STAR collaboration

University of Science and Technology of China(USTC), Brookhaven National Laboratory(BNL)

Abstract

The Relativistic Heavy Ion Collider (RHIC) is built to search for the Quark-gluon Plasma (QGP) and to study its properties in laboratory through high energy heavy-ion collisions. J/ ψ suppression in heavy-ion collisions due to color screening of quark and anti-quark has been proposed as a signature of QGP formation. But other mechanisms are likely to contribute to the observed J/ ψ suppression in heavy-ion collisions such as the cold nuclear matter effect, charm quark recombination, sequential suppression, and hot wind dissociation. Measurements of J/ ψ invariant yields at different collision centralities can shed new light on understanding the interplay of these mechanisms for J/ ψ production and medium properties.

In this presentation we report the measurements of J/ ψ signals in different transverse momentum (with p_T coverage: 0-5 GeV/c at mid-rapidity) in Au+Au collisions at $\sqrt{s_{NN}}$ 62.4 GeV and 39GeV taken in 2010 by STAR with full Time-of-Flight detector and Barrel ElectroMagnetic Calorimeter detector in operation. Centrality dependence of J/ ψ signals are also presented.

0 - 60%

Summary and outlook

1. We observe clear J/ ψ signals at different p_T and centrality bins from Au+Au collisions at 62 and 39 GeV.

2. Estimation of efficiencies is ongoing.

3. Estimation of systematic uncertainty is in progress.

4. Measurement of $J/\psi R_{cp}$ for different centrality and energy will be done in the future.

The STAR Collaboration: http://drupal.star.bnl.gov/STAR/presentations

