

Forward J/w production in Au+Au and Cu+Au collisions at PHENIX

Initial Geometry and Core/Corona

CuAu collisions

- \rightarrow unique initial conditions compared to Au+Au (e.g real ψ_2)
- → different corona on Au-side compared to Cu-side
- → Cu can be completely within the Au-nucleus in very central collisions

Nuclear overlap yields wide variety of densities versus centrality (for all species and collisions)

Estimate corona size using a Glauber model – divide according to the number of

collisions per nucleon

In Au+Au and Cu+Au collisions: A significant corona in central collisions exists

High density center,

Physics motivation

Assume that the J/ψ is formed in a region (corona), free from the hot, dense plasma (Matsui/Satz, 1986)

The large corona asymmetry in Cu+Au may result in asymmetry in the J/ψ production

Also expect that asymmetric corona will result in an asymmetric v₂ (or v₁) amplitude

The existence of such a signal will allow a tag of the Cu-side and Au-side in the collision

Cu-side / Au-side determination method

3. Tag the particle $\frac{3}{4}\pi$ around the x-axis as from

Note: No asymmetry in Au+Au but could still tag

the two nuclei at forward rapidity (where v₁ is large)

the Au-side, opposite tagged as Cu-side

Proposed measurements

Measure J/ψ production independently on

- Cu-side and Au-side (left/right asymmetry) Cu-going side and Au-going side along z of the collision (backward/forward rapidity asymmetry)
- This measurement may give a direct handle on the relative J/ψ production in the two parts of the corona, in the same event. By varying the centrality we could attempt to measure the corona size
- $v_{2}(v_{n})$ Anticipated asymmetric $v_{2}(v_{2}^{a})$ needed not only for tagging of the Au-side, but interesting to measure in

The original approach was aimed to explain the ~25% enhancement in the total charged particle multiplicity in AA collisions compared to pp and e⁺e⁻ collisions

"Leading Hadrons" observed in pp collisions

→ about 50% of the energy of the collision does not contribute to particle production

→ considering this unites pp and e⁺e⁻ collision data

→ Assume that, in AB collisions, this "leading hadron" is fully reabsorbed after a series a subsequent collisions – leading to a higher multiplicities.

Multiplicity from pp and ee collisions pp "collision energy" corrected for measured leading hadron

Lettere Al Nuovo Cimento (1971 – 1985) Volume 41, Number 9, 293-297 DOI: 10.1007/BF02739582

One can connect this to the Glauber Model, by asserting

• "surface" corona is a low-density singly-interacting region (allows leading hadrons) • "central" **core** is dominated by multiply-interacting nucleons (no leading hadrons)

Glauber simulation of Cu+Au corona and number of particles in Au versus Cu tagged side → Cu/Au-corona size changes with centrality

1. Find reaction-plane ψ_{s}

2. Orient it along Au side

Will this difference be apparent in the data?

Right

-10-8-6-4-20246810

Random

Benefit

x [fm]

Au-side tagging feasibility studies

To test whether it is feasible to make this measurement, HIJING was modified to produce particles which mimics flow. The procedure:

1. Simulate HIJING Cu+Au events

2. Rearrange final particle φ distributions to mimic v_1 and v_2

→ No model distinction between v₁ and v₂^a

3. Change the input v_1 to produce different levels of v_2^a

4. Use measured v₂ values for Cu+Cu system

→ 3-5% was measured (centrality dependent)

Evaluate the tagging efficiency:

1. Tag the Au side using v_a^a

2. Wrong tag/random benefit due to fluctuations

→ Dilutes the measurement (but exactly measurable) 3. Find the tagging efficiency

10-8-6-4-20246810

x [fm]

Tagging the Au side: v_2^a vs v_1

Do we need both v_1 and v_2 ^a?

What is the origin of v_1 ? Bounce off? Same as v_2^a ? (possibly not)

Possible that v_2^a may cancel v_1 on one side and enhance it on the other

What if $v_2^a = 0$?

Tag on v₁ in BBC region or with ZDC SMD

J/ψ measurement and outlook

Tag-Side

First J/ψ measurement from Cu+Au collisions shows a significant forward/backward difference

We want to investigate the origin of this with the detailed tagging

Within the corona have p(n)+A collisions

- Au-side : p(n)+Cu
- Cu-side : p(n)+Au

We are currently working toward measuring the forward/backward J/ψ ratios using Au-side/Cu-side tagging scheme