Forward J/w production in Au+Au and Cu+Au collisions at PHENIX #### **Initial Geometry and Core/Corona** CuAu collisions - \rightarrow unique initial conditions compared to Au+Au (e.g real ψ_2) - → different corona on Au-side compared to Cu-side - → Cu can be completely within the Au-nucleus in very central collisions Nuclear overlap yields wide variety of densities versus centrality (for all species and collisions) Estimate corona size using a Glauber model – divide according to the number of collisions per nucleon In Au+Au and Cu+Au collisions: A significant corona in central collisions exists High density center, #### **Physics motivation** Assume that the J/ψ is formed in a region (corona), free from the hot, dense plasma (Matsui/Satz, 1986) The large corona asymmetry in Cu+Au may result in asymmetry in the J/ψ production Also expect that asymmetric corona will result in an asymmetric v₂ (or v₁) amplitude The existence of such a signal will allow a tag of the Cu-side and Au-side in the collision **Cu-side / Au-side determination method** 3. Tag the particle $\frac{3}{4}\pi$ around the x-axis as from Note: No asymmetry in Au+Au but could still tag the two nuclei at forward rapidity (where v₁ is large) the Au-side, opposite tagged as Cu-side #### **Proposed measurements** Measure J/ψ production independently on - Cu-side and Au-side (left/right asymmetry) Cu-going side and Au-going side along z of the collision (backward/forward rapidity asymmetry) - This measurement may give a direct handle on the relative J/ψ production in the two parts of the corona, in the same event. By varying the centrality we could attempt to measure the corona size - $v_{2}(v_{n})$ Anticipated asymmetric $v_{2}(v_{2}^{a})$ needed not only for tagging of the Au-side, but interesting to measure in The original approach was aimed to explain the ~25% enhancement in the total charged particle multiplicity in AA collisions compared to pp and e⁺e⁻ collisions "Leading Hadrons" observed in pp collisions → about 50% of the energy of the collision does not contribute to particle production → considering this unites pp and e⁺e⁻ collision data → Assume that, in AB collisions, this "leading hadron" is fully reabsorbed after a series a subsequent collisions – leading to a higher multiplicities. **Multiplicity from pp and ee collisions** pp "collision energy" corrected for measured leading hadron Lettere Al Nuovo Cimento (1971 – 1985) Volume 41, Number 9, 293-297 DOI: 10.1007/BF02739582 One can connect this to the Glauber Model, by asserting • "surface" corona is a low-density singly-interacting region (allows leading hadrons) • "central" **core** is dominated by multiply-interacting nucleons (no leading hadrons) Glauber simulation of Cu+Au corona and number of particles in Au versus Cu tagged side → Cu/Au-corona size changes with centrality 1. Find reaction-plane ψ_{s} 2. Orient it along Au side Will this difference be apparent in the data? Right -10-8-6-4-20246810 Random Benefit *x* [fm] # **Au-side tagging feasibility studies** To test whether it is feasible to make this measurement, HIJING was modified to produce particles which mimics flow. The procedure: 1. Simulate HIJING Cu+Au events 2. Rearrange final particle φ distributions to mimic v_1 and v_2 → No model distinction between v₁ and v₂^a 3. Change the input v_1 to produce different levels of v_2^a 4. Use measured v₂ values for Cu+Cu system → 3-5% was measured (centrality dependent) ## Evaluate the tagging efficiency: 1. Tag the Au side using v_a^a 2. Wrong tag/random benefit due to fluctuations → Dilutes the measurement (but exactly measurable) 3. Find the tagging efficiency 10-8-6-4-20246810 *x* [fm] # Tagging the Au side: v_2^a vs v_1 Do we need both v_1 and v_2 ^a? What is the origin of v_1 ? Bounce off? Same as v_2^a ? (possibly not) Possible that v_2^a may cancel v_1 on one side and enhance it on the other What if $v_2^a = 0$? Tag on v₁ in BBC region or with ZDC SMD ### J/ψ measurement and outlook Tag-Side First J/ψ measurement from Cu+Au collisions shows a significant forward/backward difference We want to investigate the origin of this with the detailed tagging Within the corona have p(n)+A collisions - Au-side : p(n)+Cu - Cu-side : p(n)+Au We are currently working toward measuring the forward/backward J/ψ ratios using Au-side/Cu-side tagging scheme