Shear viscosity of the quark-gluon plasma

Matthew Luzum
(Work in progress with Jean-Yves Ollitrault)

Institut de physique théorique
CEA Saclay

Quark Matter 2012
Washington, D.C.
August 14, 2012
QUESTION:

What is the shear viscosity of the quark gluon plasma?

GOAL

- Determine the best way to extract η/s from data
- Obtain a reliable value and systematically quantify the uncertainty
QUESTION:

What is the shear viscosity of the quark gluon plasma?

GOAL

- Determine the best way to extract η/s from data
- Obtain a reliable value and systematically quantify the uncertainty

- Until now, this has not been done
 - For today, I will be conservative — error bar may shrink before publication
Questions:

What is the shear viscosity of the quark gluon plasma?

Goal:

- Determine the best way to extract η/s from data
- Obtain a reliable value and systematically quantify the uncertainty

- Until now, this has not been done
- For today, I will be conservative — error bar may shrink before publication
η/s FROM FLOW (HISTORICAL)

“Glauber” initial conditions

“CGC” initial conditions

Best extraction of η/s by comparing viscous hydro to flow data

Largest uncertainty from unknown initial condition

Initial eccentricity

- Early-time physics is not well known
- Different initial physics \Rightarrow different eccentricity ε_2
Early-time physics is not well known

Different initial physics \Rightarrow different eccentricity ε_2
Early-time physics is not well known

Different initial physics \Rightarrow different eccentricity ε_2
Initial eccentricity

- Early-time physics is not well known
- Different initial physics \implies different eccentricity ε_2
Initial eccentricity

- Early-time physics is not well known.
- Different initial physics \implies different eccentricity $\varepsilon_2 \propto v_2$.
Early-time physics is not well known

Different initial physics \Rightarrow different eccentricity $\varepsilon_2 \propto v_2$
Early-time physics is not well known

Different initial physics \implies different eccentricity $\varepsilon_2 \propto \nu_2$
Early-time physics is not well known

Different initial physics \Rightarrow different eccentricity $\varepsilon_2 \propto v_2$

Central collisions less sensitive to differences in initial physics
Extracting η/s from v_n in central collisions

NEW MEASUREMENTS OF CENTRAL COLLISIONS FROM ATLAS AT LHC

- Extract η/s from p_T-integrated v_n in ultra-central LHC collisions:
 - Minimizes uncertainty from initial conditions
 - LHC collisions more sensitive to viscosity in QGP phase
- $v_n \propto \varepsilon_n$ in central collisions (even for $n > 3$)
 (see F. Gardim, Friday 6D)
Extracting \(\eta/s \) from \(v_n \) in central collisions

New measurements of central collisions from ATLAS at LHC

- Extract \(\eta/s \) from \(p_T \)-integrated \(v_n \) in ultra-central LHC collisions:
 - Minimizes uncertainty from initial conditions
 - LHC collisions more sensitive to viscosity in QGP phase
 - \(v_n \propto \varepsilon_n \) in central collisions (even for \(n > 3! \)) (see F. Gardim, Friday 6D)

OUR HYDRO SETUP

- 2+1d, 2nd order conformally invariant viscous hydro
- Constant η/s
- With or without separate chemical and kinetic freeze out
- Can directly test effects of:
 - As many models for initial conditions as we can get our hands on
 - Thermalization time, initialization of shear tensor, viscous correction to freeze out distribution function, second order transport coefficients, equation of state, chemical freeze-out, etc.
- Not directly tested in this work:
 - Longitudinal dynamics / fluctuations
 - Bulk viscosity
 - Hydro afterburners
 - Full event-by-event analysis
η/s FROM ULTRA-CENTRAL COLLISIONS

Procedure

- Calculate integrated v_n/ε_n versus η/s in hydrodynamics
- Calculate r.m.s. ε_n from Monte-Carlo models of initial conditions
 \[\Rightarrow v_n(\eta/s) \]
- Extract best-fit value for η/s from v_2-v_6 in 0–1% central collisions
- Vary all parameters and determine effect on extracted η/s
 \[\Rightarrow \text{uncertainty in } \eta/s \]
- Estimate uncertainty from other sources
- \[\Rightarrow \text{measurement of } \eta/s \text{ with error bar} \]
A simultaneous fit of v_2–v_6 gives a preferred extracted η/s for each initial condition.

Range of results quantifies uncertainty.
A simultaneous fit of v_2–v_6 gives a preferred extracted η/s for each initial condition.

Range of results quantifies uncertainty.
A simultaneous fit of v_2-v_6 gives a preferred extracted η/s for each initial condition.

Range of results quantifies uncertainty.
A simultaneous fit of v_2–v_6 gives a preferred extracted η/s for each initial condition

Range of results quantifies uncertainty
A simultaneous fit of v_2–v_6 gives a preferred extracted η/s for each initial condition

- Range of results quantifies uncertainty
A simultaneous fit of v_2–v_6 gives a preferred extracted η/s for each initial condition.

Range of results quantifies uncertainty.

Uncertainty due to initial ε_n: $\sim \pm 0.05$
Systematic (plus statistical) experimental error: \(\delta \nu_2 / \nu_2 \simeq 5\% \), \(\delta \nu_3 / \nu_3 \simeq 4\% \), \(\delta \nu_4 / \nu_4 \simeq 5\% \), \(\delta \nu_5 / \nu_5 \simeq 12\% \), \(\delta \nu_6 / \nu_6 \simeq 61\% \)

Uncertainty due to experimental error: \(\sim \pm 0.02 \)
Viscous correction to distribution function δf

- From fluid d.o.f. to particles: $f(p, x) = f_{equil} + \delta f$
- Uncertainty due to momentum dependence of δf: ± 0.015
SECOND ORDER TRANSPIRE COEFFICIENTS: $\tau\Pi$

- $\tau\Pi = 2\frac{\eta}{sT} \times C$

- Israel-Stewart: $C = 3$
- SYM: $C = 2 - \log(2) \simeq 1.3$
- Uncertainty due to 2nd order transport coeff.: ± 0.005
Equation of State

Uncertainty due to equation of state: ±0.01
Uncertainty due to initialization of shear tensor: $< \pm 0.005$
THERMALIZATION TIME τ_0

- Uncertainty from $\tau_0 \pm 0.03$
INITIAL FLOW

- Uncertainty from initial flow ± 0.04
Systematic Uncertainty for η/s

(Preliminary!)

- Experimental uncertainties ±0.020
- Initial eccentricity ±0.050
- Thermalization time ±0.030
- Initialization of shear tensor ±0.005
- Initial flow ±0.040
- Equation of State ±0.015
- Second-order transport coeff. ±0.005
- Viscous correction to f.o. distribution ±0.015
- Chemical freeze out ±0.015

(Preliminary!)
Bounds: Hydro Run with Largest (Smallest) η/s

Lower Bound:
- Data + uncert.
- MC-KLN I.C.s
- $\tau_0 = 1$ fm
- $u_0^i = 0$
- $\Pi_0^{\mu\nu} = 0$
- BMW EOS
- $\tau_\pi = \frac{6\eta}{sT}$
- $\delta f \propto p$

Upper Bound:
- Data $-$ uncert.
- MCrcBK (w NB)
- $\tau_0 = 0.5$ fm
- $u_0^i = \frac{-\tau}{2} \partial^i \ln s$
- $\Pi_0^{\mu\nu} = $ Nav. St.
- $s95p-PCE165$
- $\tau_\pi = \frac{2.6\eta}{sT}$
- $\delta f \propto p^2$
Next step: estimate uncertainty from other sources and add to error band

- Bulk Viscosity $\sim \pm 0.010$
- $v_n/\varepsilon_n = \text{constant} \sim \pm 0.010$
- Deviation from boost-invariance / longitudinal fluct. $\sim \pm 0.005$
- Freezing out with (PCE +) Cooper-Frye $\sim \pm 0.010$
Next step: estimate uncertainty from other sources and add to error band

- Bulk Viscosity $\sim \pm 0.010$
- $v_n/\varepsilon_n = \text{constant} \sim \pm 0.010$
- Deviation from boost-invariance / longitudinal fluct. $\sim \pm 0.005$
- Freezing out with (PCE +) Cooper-Frye $\sim \pm 0.010$

Final Result:

$0.07 \leq \eta/s \leq 0.43$
SYSTEMATIC UNCERTAINTY FOR η/s

(Preliminary!)

- Experimental uncertainties ± 0.020
- Initial eccentricity ± 0.050
- $v_n/\varepsilon_n = \text{constant}$ $\sim \pm 0.010$
- Thermalization time ± 0.030
- Initialization of shear tensor ± 0.005
- Initial flow ± 0.050
- Equation of State ± 0.015
- Second-order transport coeff. ± 0.005
- Bulk Viscosity $\sim \pm 0.010$
- Deviation from boost-invariance / longitudinal fluct. $\sim \pm 0.005$
- Viscous correction to f.o. distribution ± 0.015
- Other aspects of freeze out $\sim \pm 0.025$

(Preliminary!)
SUMMARY

- Flow in central heavy-ion collisions are less sensitive to early-time dynamics
- Focusing on ultra-central collisions reduces systematic uncertainty in viscosity extraction
- First extraction of η/s with comprehensive study of systematics, reliable error bar:
 - $0.07 \leq \eta/s \leq 0.43$ (preliminary!!)
- Largest single source of uncertainty still initial conditions
- Many less significant sources of error are more important in aggregate; almost all have clear potential for improvement
Flow in central heavy-ion collisions are less sensitive to early-time dynamics

Focusing on ultra-central collisions reduces systematic uncertainty in viscosity extraction

First extraction of η/s with comprehensive study of systematics, reliable error bar:

$0.07 \leq \eta/s \leq 0.43$ (preliminary!!)

Largest single source of uncertainty still initial conditions

Many less significant sources of error are more important in aggregate; almost all have clear potential for improvement
Flow in central heavy-ion collisions are less sensitive to early-time dynamics

Focusing on ultra-central collisions reduces systematic uncertainty in viscosity extraction

First extraction of η/s with comprehensive study of systematics, reliable error bar:

$0.07 \leq \eta/s \leq 0.43$ (preliminary!!)

Largest single source of uncertainty still initial conditions

Many less significant sources of error are more important in aggregate; almost all have clear potential for improvement
Flow in central heavy-ion collisions are less sensitive to early-time dynamics

Focusing on ultra-central collisions reduces systematic uncertainty in viscosity extraction

First extraction of η/s with comprehensive study of systematics, reliable error bar:

$0.07 \leq \eta/s \leq 0.43$ (preliminary!!)

Largest single source of uncertainty still initial conditions

Many less significant sources of error are more important in aggregate; almost all have clear potential for improvement
Summary

- Flow in central heavy-ion collisions are less sensitive to early-time dynamics
- Focusing on ultra-central collisions reduces systematic uncertainty in viscosity extraction
- First extraction of η/s with comprehensive study of systematics, reliable error bar:
 - $0.07 \leq \eta/s \leq 0.43$ (preliminary!!)
- Largest single source of uncertainty still initial conditions
- Many less significant sources of error are more important in aggregate; almost all have clear potential for improvement
Summary

- Flow in central heavy-ion collisions are less sensitive to early-time dynamics
- Focusing on ultra-central collisions reduces systematic uncertainty in viscosity extraction
- First extraction of η/s with comprehensive study of systematics, reliable error bar:
 - $0.07 \leq \eta/s \leq 0.43$ (preliminary!!)
- Largest single source of uncertainty still initial conditions
- Many less significant sources of error are more important in aggregate; almost all have clear potential for improvement
Flow in central heavy-ion collisions are less sensitive to early-time dynamics

Focusing on ultra-central collisions reduces systematic uncertainty in viscosity extraction

First extraction of $\frac{\eta}{s}$ with comprehensive study of systematics, reliable error bar:

$0.07 \leq \frac{\eta}{s} \leq 0.43$ (preliminary!!)

Largest *single* source of uncertainty still initial conditions

Many less significant sources of error are more important in aggregate; almost all have clear potential for improvement
P. H. Frampton & T. Stelbovics

Extracting Shear Viscosity: Recent Results

\(\varepsilon_n \) FROM A FEW MODELS

Graph showing the r.m.s. \(\varepsilon_2 \) as a function of centrality for different models:
- Glauber (disks)
- MC-KLN
- DIPSY
- Glauber (points)
- UrQMD
- MCrcBK (KNO)

The graph compares the results from these models across different centrality values, illustrating how the shear viscosity changes with varying levels of collision centrality.
ε_n from a few models
Extracting Shear Viscosity

Recent Results

\(\varepsilon_n \) FROM A FEW MODELS

![Graph showing the r.m.s. \(\varepsilon_4 \) as a function of centrality for different models: MCrcBK (KNO), UrQMD, DIPSY, Glauber (points), Glauber (disks), MC-KLN.](image-url)

- **MCrcBK (KNO)**: Light blue dashed line
- **UrQMD**: Red line with plus symbols
- **DIPSY**: Purple dotted line
- **Glauber (points)**: Green dash-dotted line
- **Glauber (disks)**: Blue dotted line
- **MC-KLN**: Black solid line

This graph compares the predictions of various models for the shear viscosity as a function of centrality.
ε_n FROM A FEW MODELS

![Graph showing viscosity results from different models]

- MCrcBK (KNO)
- UrQMD
- DIPSY
- Glauber (points)
- Glauber (disks)
- MC-KLN

The graph compares the r.m.s. ε_5 as a function of centrality for different models.
Extracting shear viscosity recent results

ε_n from a few models

![Graph showing r.m.s. ε_6 vs. centrality for different models: MCrcBK (KNO), UrQMD, DIPSY, Glauber (points), Glauber (disks), and MC-KLN.](image)
SELECTING CENTRALITY (EXAMPLE FROM PHOBOS GLAUBER)

Correct binning in centrality is important for very central collisions.
Central Dependence of ε_n (ALICE arXiv:1105.3865)

- Centrality dependence of v_2 \Rightarrow centrality dependence of ε_2
- \Rightarrow intrinsic eccentricity
EXTRA SLIDES

$\frac{v_3}{\epsilon_3}$ vs η/s

- v_3 is the shear viscosity
- ϵ_3 is the third-order shear viscosity
- η is the shear viscosity
- s is entropy density