Event-by-Event Fluctuations in Initial Conditions in Relativistic Hydrodynamic Model

Koichi Murase (Univ. of Tokyo), Tetsufumi Hirano (Sophia Univ.), Pasi Huovinen (Goethe Univ.), Yasushi Nara (Akita International Univ.)

Abstract
We constructed an integrated simulation framework to study the effect of fluctuating initial conditions of heavy ion collisions quantitatively, and performed a massive event-by-event numerical simulations under the configuration of RHIC and LHC, and compared the analysis methods to obtain the flow harmonics values.

1. Introduction

Integrated Dynamical Model Based on Relativistic Hydrodynamics
- Describe the whole process of heavy collision reaction using several models for each stage of the reaction:
 - Thermalization
 - Quark-gluon plasma
 - Hadronization
 - Hadron gas

- Extract the properties of QGP by comparing the results to experimental data
- Transport properties of QGP:
 - Shear viscosity η
 - Bulk viscosity ζ
 - Relaxation time τ

2. Simulation of Integrated Dynamical Model

Recent Experimental Data → Event-by-Event Fluctuations

Anisotropic flows
- Central collision
- The averaged initial condition
- An initial condition of a single event

Purpose of this study
- Event-by-event massive numerical simulations with the fluctuating initial conditions
- The same analysis methods of flow harmonics v_n as in experiment

5. Harmonic Analysis
- Harmonics v_n: Fourier coefficient of azimuthal distribution of particles
- $v_n = \frac{1}{N} \int dx f(x) \cos(n \phi) dN/dx$ (normalized to the pseudorapidity distribution)
- ϕ: angle measured from the reaction plane
- v_n: proper angles of the event

Methods to evaluate v_n
- Reaction plane $v_n(RP)$ (calculable only in theory)
- Participant plane v_n_PP (calculable only in theory)
 - Measuring v_n with respect to the flow vectors
- Two-particle correlation method $v_n(2)$
- Four-particle correlation method $v_n(4)$
 - Cumulants using relative angles of particles

3. Result: Higher Flow Harmonics

• MC-KLN vs. MC-Glauber in higher anisotropic flows ($n=2$, 3, 4, 5)

$\nu_{v_n}(v_0 < v_n(EP)) < \nu_{v_n}(\nu_0, \nu_3, v_n(EP))$

Differences in methods to evaluate harmonics value

• Pseudo-rapidity dependence in a wide range

• Differences in methods to evaluate harmonics value

Necessity to use the same method to quantitatively compare a model to experiment

4. Result: PP Angles and EP Angles

• Correlations between an initial condition angle ϕ_{inc} and a resulting flow angle Ψ

• Significant difference between Ψ, Ψ_1, and Ψ_2

• $\phi_2 \rightarrow \Psi_2$, $\phi_1 \rightarrow \Psi_1$

$\phi_1 \rightarrow \phi_2$ in non-central collisions

$\phi_2 \rightarrow \phi_3$ in non-central collisions

5. Summary and Outlook
- We performed harmonic analysis using the results of event-by-event simulations for a large number of events and obtained higher anisotropic flows ($n = 2$–6) as functions of centrality and η.
- There are significant differences among evaluation methods of v_n which requires special attention in comparison of model results with data.
- We also looked into correlations between initial condition angles and flow angles.
- While v_2 and v_3 are induced by ϕ_2 and ϕ_1 respectively, higher anisotropic flows are generated by lower order anisotropies of initial conditions in non-central collisions.
- In future, we plan to perform similar analysis using $3+1$-dimensional viscous hydrodynamics.