Beam Energy Dependence of First and Higher-Order Flow Harmonics from the STAR Experiment at RHIC

Yadav Pandit

(for the STAR Collaboration)

Outline:

- Introduction and motivation
- The Beam Energy Scan at RHIC
- The STAR experiment
- v_1 in 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au+Au Collisions
- v₃ results in 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au+Au and 62.4 and 200 GeV Cu+Cu Collisions.
- v_n (n=1-5) as a function of p_T in 200 GeV Au+Au Collisions
- Summary

Office of Science
U.S. Department of Energy

Introduction: Anisotropic Flow in Heavy ion Collisions

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$

$$v_{\rm n} = \langle \cos n(\varphi - \psi_n) \rangle, \quad n = 1, 2, 3...,$$

Directed Flow

- conventional(rapidity odd)
- dipole asymmetry(rapidity even)

Anisotropy in position space (initial) \rightarrow Anisotropy in momentum space (final)

Motivation: $v_1(y)$ Structure

J. Brachmann et al., PRC 61, 24909 (2000).

L.P. Csernai, D. Rohrich PLB 458, 454 (1999)

Anti-flow/3rd flow component: $v_1(y)$ of nucleons crosses zero 3 times (so-called "wiggle") or flat v_1 at midrapidity due to 1^{st} order phase transition.

Motivation: v_3/v_n

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.

 v_3 and higher harmonics (v_n) are sensitive to initial-state fluctuations and hydrodynamic evolution and they probe smaller length scale than v_2 .

RHIC Beam Energy Scan (BES) Program

Motivation:

Search for signals of phase boundary Search for signals for critical point

Established observables:

NCQ scaling of v_2	Partonic vs. hadronic degrees of freedom
Dynamical charge correlations	Partonic vs. hadronic degrees of freedom
Azimuthally sensitive HBT	Possible 1st order phase transition
v₁ vs. rapidity	Possible 1st order phase transition
Fluctuations	Possible critical point
v_3/v_n	Initial geometry/viscosity

- ❖ RHIC successfully completed first phase of BES program in 2011.
- \clubsuit Directed flow results at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV are presented here.
- v_3 results in 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au+Au and 62.4 and 200 GeV Cu+Cu collisions are presented.
- ❖ Transverse momentum dependence of higher harmonics (n = 1-5) at 200 GeV Au+Au collisions are presented

STAR Experiment

❖ Time of Flight (TOF) provides excellent particle identification p_T < 1.6 GeV/c for pions (0< m^2 <0.10 (GeV c²)²), kaons (0.20< m^2 <0.35 (GeV/c²)²) and p_T <2.8 GeV/c for protons (0.8< m^2 <1.0 (GeV/c²)²)

- Time Projection Chamber (TPC) is main tracking detector at STAR.
- ❖ Forward TPC (FTPC) (2.5 < $|\eta|$ < 4.0) also provides tracking at forward rapidity

- Beam Beam Counters (BBC) (3.3<|η|<5.0) are used to reconstruct the first-order event plane at 39 GeV and lower beam energies. BBC provides adequate event plane resolution.
- Greatly reduced non-flow effects in v_1 study because of η gap between TPC and BBC.

Proton and pion v_1

Directed flow of protons and pions at five different energies in central (0-10%), midcentral (10-40%) and peripheral (40-80%) collisions near midrapidity.

Baryon stopping + positive space-momentum correlation cannot explain both proton and pion flow simultaneously.

- P. Huovinen in *Quark-Gluon Plasma 3*, eds: R.
 C. Hwa, X. N. Wang (World Scientific, Singapore, 2003), p. 616.
- 2. R. J. Snelling *et al.*, PRL **84**, 2803 (2000).
- 3. M. Bleicher and H. Stöcker, PLB **526**, 309 (2002).

Beam energy dependence of v_1 slope ($F = dv_1/dy'$)

 $F = r F_{\text{anti-p}} + (1 - r) F_{\text{trans}}$, where r is the observed ratio of antiprotons to protons.

- Possible signature of EOS softening.
- F_{trans} (labeled $p \overline{p}$ in Fig.) is also called "net-proton" v_1 slope.
- We observe non-monotonic behavior of net-proton v₁ slope.
- UrQMD and AMPT cannot explain even the sign of the net proton data.
- Need more input from theory and more statistics to accurately measure centrality dependence to fully understand underlying physics.

Triangular flow: Method of Measurement

We use TPC η sub-event plane method, with η gap of 0.05 between the two sub-events.

Beam Energy Dependence: 7.7-200 GeV Au+Au Collisions

• Triangular flow as a function of p_T : measurements at 7.7, 11.5, 19.6, 27 & 39 GeV lie below 200 GeV points at low p_T but difference is less at higher p_T .

Beam Energy and System Size Dependence

- Triangular flow as a function of centrality within 0-20%, integrated in $p_{\rm T}$ (0.2 <p_T< 2.0 GeV/c) and η ($|\eta|$ < 1.0): v_3 appears almost flat up to 27 GeV, with a large increase thereafter.
- v₃ persists all the way down to 7.7 GeV where jets are negligible.
- Triangular flow vs. N_{part} depends on beam energy, but $v_3(N_{part})$ is about the same for Au+Au and Cu+Cu at each energy.

Flow harmonics (n=1-5) at 200 GeV: p_T dependence

- n=1 is signal associated with dipole asymmetry, corrected for momentum conservation.
- Model curves for n=1 are from Retinskaya, Luzum & Ollitrault, PRL **108**, 252302 (2012) ($\eta/s=0.16$); higher n curves are from Gardim et~al., arXiv:1203.2882 (ideal hydro) and for n=2 and n=3 with $\eta/s=0.16$ are from B. Schenke et~al., PRL **106**, 042301 (2011).
- The models do a good job describing the general features of the data. These comparisons suggest that low or zero viscosity is favored.

Summary

- For mid-central Au+Au collisions, proton directed flow slope (dv_1/dy) changes sign from positive to negative between 7.7 and 11.5 GeV and remains small but negative up to 200 GeV; slope for pions, kaons and antiprotons remains always negative.
- The v_1 slope for net protons shows non-monotonic behavior at low beam energies (is negative at 11.5 and 19.6 GeV & positive at all other energies). UrQMD & AMPT do not qualitatively account for the algebraic signs. More input from theory is necessary to fully understand this behavior.
- Triangular flow as a function of p_T measured for Au+Au at BES energies and compared with 62.4 and 200 GeV Au+Au and Cu+Cu. We also report centrality and N_{part} dependence of v_3 .
- All flow harmonics (n=1-5) measured as a function of p_T . These measurements provide significant inputs for understanding both initial fluctuation and transport properties.