Quark Matter 2012

Contribution ID: 508

Type: Poster

Relation Between the Trace Anomaly and Shear Viscosity in Clustering of Color Sources and the Equation of State of the QGP

Thursday 16 August 2012 16:00 (2 hours)

The major challenge in heavy ion physics is to extract the equation of state and the shear viscosity to entropy ratio η/s from the data. In the clustering of color sources (CSPM) the charged particle transverse momentum spectrum is used to measure the percolation density parameter ξ , which determines the initial temperature T, energy density ϵ , and the η/s ratio versus T in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

For 0.9 $T_c < T < 1.2 T_c$ ($T_c = 167.7$ MeV), the sound velocity C_s^2 from the mass less non interacting constituent version of CSPM agrees with Lattice QCD (LQCD) C_s^2 values . For T> $1.2T_c$ there is a significant difference with the LQCD values\cite{eos}.

The measured CSPM value for $\eta/s = 0.20$, at $1.15T_c$ is consistent with a strongly coupled QGP and increases with T. The Trace Anomaly \triangle is defined as $(\epsilon - 3p)/T^4$.

Above T_c , the LQCD \triangle and the reciprocal of η/s fall off with 1/T. At T_c , s/η has a magnitude of ~5.5, non interacting - CSPM has a $\triangle \sim 5.5$ and LQCD $\triangle \sim 5.5$. The change in \triangle and s/η with 1/T describes the transition from a strongly to weakly coupled QGP. Above T_c , s/η and the LQCD \triangle may have the same underlying structure. The C_s^2 values for the QGP obtained using the $s/\eta \sim 5.5$ version of CSPM above T_c are in excellent agreement with LQCD \cite{wupp, hotqcd}.

The CSPM predictions for Pb-Pb and p-p collisions at LHC energies will be presented.

Author: Prof. SCHARENBERG, Rolf (Purdue University)

Co-authors: Prof. HIRSCH, Andrew (Purdue University); SRIVASTAVA, Brijesh Kumar (Purdue University (US))

Presenter: Prof. SCHARENBERG, Rolf (Purdue University)

Session Classification: Poster Session Reception

Track Classification: QCD at finite temperature and density