

Azimuthal Anistropy Results from STAR

Daniel Cebra For the STAR Collaboration

University of California, Davis

Daniel Cebra 8/13/2012

Quark Matter 2012 Washington, D.C.

Azimuthal anisotropy basics

What is new this year?

200 GeV Au+Au

- Flow versus non-flow Yi Li (W 9:30)
- Precision measurements of v_2 H. Masui (Poster #145)
- v_2 results for multi-strange hadrons M. Nasim (W 10:10)
- Flow harmonics $(v_1 v_5)$
- v_2 for jets

A. Ohlson (W 11:40)

Beam Energy Scan

- Directed flow
- Hadron elliptic flow
- Identified particle elliptic flow
- Azimuthally sensitive HBT

Y. Pandit (T 2:55)

'Flow' and non-flow in $\sqrt{s_{NN}} = 200$ GeV Au+Au

'Flow' v_n {2}, non-flow δ_n , and flow fluctuations $\langle v_n^2 \rangle$

flow fluctuations

•The decomposed 'flow' appears to be independent of $\boldsymbol{\eta}$.

Yi Li (W 9:30)

5 of 22

Precision measurements in $\sqrt{s_{NN}}$ = 200 GeV Au+Au

€ 0.15 0-10%

Au + Au

at √s_{NN} = 200 GeV

STAR preliminary

6 of 22

(m_-m_)/n_(GeV/c2)

0-10%

The high statistics dataset available at full energy allows for precision tests of the scaling by the number of constituent quarks (NCQ), which has been interpreted as a signature of partonic collectivity.

We can measure v_2 of identified particles up to $p_T = 8 \text{ GeV/c}$.

There is mass ordering for all centralities below $p_T=2$ GeV/c.

At high p_t , there is a hint of a breakdown of the scaling for $(m_{\tau}-m_0)n_q>1$ GeV/c² for 10-40% centrality.

p₁/n_q (GeV/c)

Daniel Cebra 8/13/2012

Precision measurements in $\sqrt{s_{NN}} = 200$ GeV Au+Au

Multi-strange hadrons are more sensitive to the partonic stage
 Do hadrons with multiple strange quarks flow similarly to those made of more common quarks?

➢ Qualitatively, the behavior is similar. However we now add details about the centrality dependence.

Quark Matter 2012 Washington, D.C. M. Nasim (W 10:10)

Elliptic flow of Ω , Ξ , and ϕ in $\sqrt{s_{_{NN}}}$ = 200 GeV Au+Au

With scaling and with a ratio of the fit to the K⁰_s, it is evident that:

> Deviation of phi v_2 for $(m_T - m_0)/n_q > 0.6 \text{ GeV/c}^2$ is larger for 30-80% than for 0-30% > Strangeness counts $\rightarrow v_2(\Xi) < v_2(\Lambda), v_2(\varphi) < v_2(K_S^0)$ at 30-80% centrality for $m_T - m_0 > 1 \text{ GeV/c}^2$

Daniel Cebra 8/13/2012 Quark Matter 2012 Washington, D.C. M. Nasim (W 10:10)

Flow Harmonics in $\sqrt{s_{NN}} = 200$ GeV Au+Au

•Harmonics are also able to tells us about the viscosity of the medium

•The models do a good job describing the general features of the data.

Y. Pandit (T 2:55)

Beam energy scan

- We observe a difference in v_2 between protons and anti-protons
- This difference is largest at the lowest energies
- We define Δv_2 as the v_2 of the proton minus that of the anti-proton
- Δv_2 is constant in the measured p_T range and decreasing with increasing energy

S. Shi (F 3:20)

Particle-anti-particle elliptic flow; Energy Scan

• There is a remarkable difference between particles and their anti-particles, especially for the lowest energies in the range.

• Difference between particles and their anti-particle decreases with increasing beam energy

Possible explanation

- Baryon transport to midrapidity [J. Dunlop et al., PRC 84, 044914 (2011)]
- Hadronic potential [J. Xu et al., PRC 85, 041901 (2012)]

Daniel Cebra 8/13/2012

S. Shi (F 3:20) A. Schmah (Poster #141)

• Splitting for anti-particles is gone at 11.5 GeV, for particles the splitting is still evident at 11.5 GeV, however it is small at 7.7 GeV

S. Shi (F 3:20)

Quark Matter 2012 Washington, D.C.

15 of 22

NCQ scaling of elliptic flow; Energy dependence

NCQ scaling of elliptic flow; Energy dependence

Directed flow in $\sqrt{s_{NN}}$ = 7.7 to 39 GeV Au+Au

Hadron elliptic flow; Energy dependence

- v₂{4} results
- Three centrality bins
- Consistent v₂(p_T)
 from 7.7 GeV to
 2.76 TeV for p_T > 2
 GeV/c

⊳ p_T< 2GeV/c

The v₂ values rise with increasing collision energy -> Large collectivity Particle composition

Hadron elliptic flow; Energy dependence

Quark Matter 2012 Washington, D.C.

Azimuthally sensitive HBT; Energy dependence

The high statistics 200 GeV datasets have allowed us study:

- The role of non-flow effects (jets) in v_2 analyses
- The p_{T} limits of the NCQ scaling regime
- The behavior of hadrons with multiple strange quarks
- The higher flow harmonics

The Beam Energy Scan (phase I) datasets have allowed us to study:

- The breakdown of NCQ scaling \rightarrow specifically particle anti-particle differences
- A non-monotonic behavior of the proton directed flow
- The systematics of the p_{t} averaged elliptic flow
- The spatial expansion of the source (through azimuthally sensitive HBT)

Backups

Hadron elliptic flow in $\sqrt{s_{NN}}$ = 193 GeV U+U

Daniel Cebra 8/13/2012

Quark Matter 2012 Washington, D.C.