

Results on Jet Spectra and Structure from ALICE

Andreas Morsch CERN for the ALICE Collaboration

Quark Matter 2012 Washington DC, 08/14/2012

- Jet reconstruction in ALICE
- Jet spectra pp at $\sqrt{s} = 2.76$ TeV
 - Reference for Pb-Pb
- Charged jet yield suppression in Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV
 - $R_{AA}(p_{T}^{Jet})$ using Pythia reference
 - Resolution parameters *R* dependence
- Hadron-Jet correlations
 - Modification of conditional yields and their *R* dependence
- Isolated γ-hadron correlations
- Conclusions

Jet Reconstruction in ALICE

Energy and direction of neutral particles EMCal: Pb-scintillator sampling calorimeter which covers:

|η| < 0.7, 80° < φ < 180°

- 11520 towers with each covers $\Delta\eta\times\Delta\phi\sim0.014\times0.014$

Jet Finder and Inputs

• Anti- k_{τ} Algorithm from FastJet^{*} package

- Resolution parameter R = 0.2, 0.3, 0.4
- Area cut A > 0.1-0.4 avoids extremes
- Jet vector from boost invariant
 - $p_{_{T}}$ recombination scheme
- Charged Jets
 - Input: tracks with $p_{\tau} > 150 \text{ MeV/}c$
 - Advantage: full azimuth (φ) coverage
- Fully reconstructed jets
 - Input
 - Tracks with $p_{_{\rm T}}$ > 150 MeV/c
 - EMCAL clusters E_{T}^{clus} > 150 MeV after correction for energy from charged particles
 - Jet required to be fully contained in EMCAL acceptance
 - Advantages: trigger capability, higher $p_{T,Jet}$ reach, unbiased fragmentation

^{*} M. Cacciari, G.P. Salam and G. Soyez,

Eur.Phys.J. C72 (2012) 1896 [arXiv:1111.6097]

 $\begin{array}{l} \underline{\text{Distance Definition}}\\ D_{ij} = \min\left(p_{\mathrm{T}\,i}^{2p}, p_{\mathrm{T}\,j}^{2p}\right) \frac{\Delta R_{ij}^2}{R^2}; D_i = p_{\mathrm{T}\,i}^{2p}\\ k_T(\operatorname{anti} k_T): p = 1(-1)\\ \text{Compute all } D_{ij}, \ D_i, \ d = \min\left(D_{ij}, D_i\right)\\ \text{if } d = D_{ij}: \ \text{combine } i \text{ with } j\\ \text{if } d = D_i: \ i \ \text{ is final state jet} \end{array}$

Jet Reconstruction Corrections

- Jet-by-Jet
 - Charged particle energy correction for EMCAL clusters

$$E_{\text{clus}}^{\text{corr}} = E_{\text{clus}}^{\text{raw}} - \sum p^{\text{matched}}, E_{\text{clus}}^{\text{corr}} > 0$$

- Pb-Pb: Underlying event (UE) energy correction

$$p_{\mathrm{T},\mathrm{Jet}} = p_{\mathrm{T}}^{\mathrm{rec}} - p_{\mathrm{T}}^{\mathrm{UE}}$$

- Jet spectrum corrections: bin-by bin or unfolding
 - Corrections for unmeasured neutral energy (n, K⁰_L) and related fluctuations of the jet energy scale (JES)
 - Tracking inefficiency and corresponding fluctuations
 - Pb-Pb: Smearing due to UE energy fluctuations

Jets in pp at $\sqrt{s} = 2.76$ TeV

- JES uncertainty: 4%
 - Missing neutral energy
 - Tracking efficiency
 - Energy double counting (charged particle correction)
- Jet p_{T} resolution 20%
 - Event-by-event fluctuations of JES
 - Track $\Delta p_{T} / p_{T} = 40 \text{ GeV/c: } 4\%$
 - EMCAL resolution at E = 40 GeV: 3%
- Effects of efficiency and resolution on jet spectrum are corrected bin by bin.

- Good agreement with NLO pQCD + hadronization and Pythia8
- Important reference for Pb-Pb analysis

Jets in pp at $\sqrt{s} = 2.76$ TeV : Jet shape information by varying *R*

Good agreement with NLO pQCD and Pythia8 Increase of $\sigma(R=0.2)/\sigma(R=0.4)$: Higher p_{τ} jets are more collimated

Jets in Pb-Pb at $\sqrt{s}_{NN} = 2.76$ TeV Background from UE

energy: *A*^{Jet} ρ

Corrections required due to UE Energy
 Event-by-event subtraction of the background

$$\rho = median \left(\frac{p_{T}^{Jet}}{A^{Jet}}\right)_{k_{T}} - Algorithm$$

8

- Raw spectrum smeared by background energy fluctuations
 - Need to unfold using resolution matrix
- Jets from background combinatorics (fake jets) at low p_{T}^{Jet} :
 - Efficiently removed by requiring a $p_{_{T}} > 5$ GeV/c leading hadron inside jet

Background Fluctuations

- In Pb-Pb jet energy resolution limited by background fluctuation within jet area.
- Fluctuations characterized by distribution of

$$\delta p_{\mathrm{T}} = (p_{\mathrm{T}}^{\mathrm{rec}} - \rho A^{\mathrm{Jet}}) - p_{\mathrm{T}}^{\mathrm{true}}$$

- Distribution obtained by embedding particles into min. bias event or by placing random cones with areas close to the ones of reconstructed jets.
 - For anti- k_{τ} : $A \approx \pi R^2$

Charged Jet Spectra in Pb-Pb

Normalized yield shows suppression increasing with centrality.

Charged Jet R_{AA} wrt Pythia Reference

Comparison with inclusive hadron R

Jet suppression similar to inclusive hadron suppression at comparable parton p_{\perp}

Possible scenario:

- Radiated energy mainly outside jet cone
- Leading particle p_{τ} shifted in proportion to its contribution to the jet energy

$$\Delta E_{\text{leading}} = \mathsf{Z}_{\mathsf{L}} \, \Delta E_{\text{part}}$$

12

Possible Redistribution of Energy Between R= 0.2 and 0.3

- No redistribution of energy within experimental uncertainties
- Ratios consistent with
 - Results from more peripheral collisions
 - Pythia (vacuum fragmentation) and
 - JEWEL MC model calculations

Jets Tagged by High- p_{T} Hadron

Requirement of high $p_{_{T}}$ hadron reduces contribution from combinatorial (fake jets) Improved stability of unfolding allows to assess lower $p_{_{T,Jet}}^{ch}$ hor change of fragmentation within uncertainties except for lowest $p_{_{T,Jet}}^{ch}$ bin.

More details ...

Rosi Reed, Parallel Session 2B Poster by Marta Verweij Poster by RongRong Ma

Hadron-Jet Correlations

- Can surface bias of leading hadrons be used to increase jet suppressions and structure modification ?
 - Idea: Study conditional jet yield requiring a trigger hadron back-to-back with respect to jets
 - If surface bias present the parton producing the jet is biased towards higher in-medium path length
 - Additional advantages:
 - Requiring correlated high-p₁ hadron tags hard
 scatterings suppressing the combinatorial (fake jet background)

Recoil

jet

• No fragmentation bias on the recoiling jet

See Talk Leticia Cunqueiro, Parallel Session 3B

Hadron-Charged Jet Correlation Analysis

How to remove uncorrelated component ? Study difference between signal recoil spectrum and a reference: $\Delta_{recoil}(p_{T,Jet}^{ch})$

Difference Recoil Spectra

Difference of semi-inclusive recoil jet yields

Correlated uncertainties:

- Flow bias on background induced by hadron trigger
- Tracking efficiency uncertainty
- Reference distribution scaling factor

Shape uncertainty (from unfolding):

- p_{T}^{min} cut variations, feed in/out
- Regularization: β variations and difference to Bayesian result

 $\Delta I_{AA}(p_{T,Jet}^{ch}) =$ $\frac{Pb-Pb}{recoil}/\Delta$

I using Pythia Reference

Ratio of conditional yield close to unity: $\Delta I_{AA} = 0.75$ Strong h-Jet pair suppression $R_{AA}^{h} \Delta I_{AA} \approx 0.25 \times 0.75 = 0.2$ However, two competing effects are possible: Recoil jet suppression: ΔI_{AA} decreases Trigger parton energy loss: ΔI_{AA} increases since at the same p_{T}^{trig} : $Q_{Pb-Pb}^{2} > Q_{Pp}^{2}$

Comparison to Di-Hadron Correlations

PhysRevLett.108.092301 arXiv:1110.0121v2 [nucl-ex] Qualitatively and quantitatively similar behavior in di-hadron correlations at lower Q^2 .

Model Comparisons

preliminary:unexplored systematics

Isolated Photon Hadron Correlations in pp at $\sqrt{s} = 7$ TeV

<u>Isolation criterion</u>: No particle with $p_{\tau} > 0.5$ GeV in cone *R*=0.4

Andreas Morsch, QM 2012, Washington DC, August 14, 2012

See Talk Nicolas Arbor, Parallel Session 1B

22

$X_{\rm F}$ Distributions

Conclusions

• We observe a strong suppression of the inclusive charged jet yield in central Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV

-
$$R_{AA}^{\text{charged Jet}} = 0.2-0.35$$
 in the $30 < p_{T, \text{ Jet}}^{\text{ch}} < 100 \text{ GeV/c}$

- Lower than inclusive hadron R_{AA} at similar parton p_{T}
- No indication of energy redistribution observed from ratios of jet yields $\sigma(R=0.2)/\sigma(R=0.3)$ within exp. uncertainties.
- Conditional hadron-jet yield suppressed by factor of 0.75 with respect to Pythia reference.
 - Similar to conditional away-side hadron-hadron yields at lower Q^2 .
- Yield and conditional yield suppression patterns qualitatively and to some extent quantitatively similar for single hadrons and jets.
 - Consistent with interpretation as consequence of energy loss through radiation outside jet cone.
- γ -hadron measurements ($x_{\rm E}$) in pp at at $\sqrt{s_{\rm NN}} = 7$ TeV
 - Important step towards Pb-Pb measurement.

Additional Posters

- Measurements of charged particle jet properties in pp collisions at √s = 7 TeV (Sidharth Kumar Prasad)
- Jet measurements in proton-proton collisions (Michal Vajzer)
- Jet-Hadron Azimuthal Correlation Measurements in p+p Collisions at √s = 2.76TeV and 7TeV (Dosatsu Sakata)

Backup

Jets in pp Trigger Efficiency

- EMCal Level-0 trigger
 - Used in data-taking to extend the kinematic reach of jet spectrum.
- Bias on the jet population
 - Estimated in simulation via incorporating the EMCal cluster turn-on curves and local inefficiency of the trigger system extracted from data.

Jets in pp Bin by Bin Corrections

$$C_{\rm MC}(p_{\rm T}^{\rm low}, p_{\rm T}^{\rm high}) = \frac{\int_{p_{\rm T}^{\rm high}}^{p_{\rm T}^{\rm high}} dp_{\rm T} \frac{dF_{\rm measure}^{\rm unorr}}{dp_{\rm T}} \frac{d\sigma_{\rm MC}^{\rm Particle}/dp_{\rm T}}{d\sigma_{\rm MC}^{\rm Detector}/dp_{\rm T}} \frac{d\sigma_{\rm MC}^{\rm Particle}}{d\sigma_{\rm MC}^{\rm Detector}/dp_{\rm T}}$$

Jets in pp Underlying Event

Effects of underlying event subtraction on jet spectrum

Event-by-Event Background Subtraction

$$\rho = \text{median}\left(\frac{p_{\text{T}}^{\text{jet},i}}{A_{i}^{\text{jet}}}\right)$$

Andreas Morsch, QM 2012, Washington DC, August 14, 2012

Charged Jets in PbPb Raw Spectra

Pb-Pb: Unfolding

- Choice of p_{τ} ranges in unfolding and systematic uncertainties
 - Measured spectrum: Suppression of background jets by $p_{_{T,meas}} > 5\sigma(\delta p_{_{T}})$.
 - Feed in from low p_{τ} . Unfolded spectrum starts at $p_{\tau}=0$ GeV/c
 - Regularization strength: systematic uncertainty on extracted jet yield 10% for central events and 4% for peripheral events
 - Jet energy scale correction from detector effects: ~10%

Andreas Morsch, QM 2012, Washington DC, August 14, 2012

ALICE

Leading Particle Tag: Flow Bias

- Flow bias: high p_{τ} hadron correlated to event and participant plane.
 - Background density per unit area below jet is larger.
- Magnitude of bias on inclusive jet spectra depends on $p_{\rm T}$ of trigger.
 - Hadron triggered jet spectra are corrected for the flow bias.

Jet and leading particle energy loss

$$E_{\rm jet} \! \rightarrow \! E_{\rm jet} \! - \! \Delta E$$

$$p_{\mathrm{T, leading}} \rightarrow p_{\mathrm{T, leading}} - z_{\mathrm{leading}} \Delta E$$

$$\frac{p_{\mathrm{T, leading}} - z_{\mathrm{leading}} \Delta E}{E_{\mathrm{jet}} - \Delta E} = \frac{z_{\mathrm{leading}} E_{\mathrm{jet}} - z_{\mathrm{leading}} \Delta E}{E_{\mathrm{jet}} - \Delta E} = z_{\mathrm{leading}}$$

36