Nuclear Modification Factor of Muons From Open Heavy Flavour Decays and Single Muon Elliptic Flow at Forward Rapidity in Pb–Pb Collisions at $\sqrt{s_{NN}}=2.76$ TeV with ALICE

Xiaoming Zhang for the ALICE Collaboration

Institute of Particle Physics, CCNU, Wuhan, China Key Laboratory of Quark & Lepton Physics, MoE, China Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand, France

Quark Matter 2012, 13–18 August, 2012, Washington, DC., USA

Friday, August 17, 12

Outline

Heavy Flavour Physics at LHC
ALICE Setup
R_{AA} of Muons From Heavy Flavour Decays
Elliptic Flow of Inclusive Muons
Summary

Heavy Flavour Physics at LHC

Heavy flavours in pp collisions:

baseline for pA and AA collisions;
test NLO pQCD in a new energy domain.

Heavy Flavours in AA collisions:

- ∅ tomography of QCD medium,
 - mass and color charge dependence of parton energy loss,

R_{AA}(light hadron)<R_{AA}(D)<R_{AA}(B) [Phys. Rev. D69 (2004) 114003, Phys. Rev. D71 (2005) 054027];

- \odot azimuthal anisotropic flow, $v_n(p_t, \eta)$,
 - Iow p_T region: initial conditions of QCD medium, degree of thermalization of heavy quarks in QGP,
 - In high p_T region: path length dependence of heavy flavour energy loss.

ALICE Setup

0

 \bigcirc

0

arXiv:1205.6443, accepted for publication in Phys. Rev. Lett.

Data Samples and Muon Selection

Data Samples: Opp collisions, muon trigger, $\mathcal{L}_{int}=19$ nb⁻¹; @Pb-Pb collisions, minimum bias trigger, $\mathcal{L}_{int}=2.7 \ \mu b^{-1}$. Track selection: \bigcirc -4< η <-2.5: acceptance of ALICE MUON spectrometer; @muon trigger μ from matching: reject heavy flavours absorber hadrons that cross μ from primary π/K the absorber; absorber IP Spointing angle to the μ from vertex: remove secondary π/K absorber beam-gas and Punch through particles produced in hadrons absorber the absorber.

Background Subtraction: pp

Strategy:

@ extract dN/dp_T of K/ π decay muons from simulation
(PYTHIA or Phojet);

Subtract from inclusive dN/dp_T to obtain heavy flavour

decay muon spectrum. 💡

Systematic uncertainty:
models: estimated by using different inputs;
transport codes, estimated by varying yield of muons from secondary K/π between 0 and 200%.

Background Subtraction: Pb-Pb ALICE Simput: K/ π spectra in pp collisions and R_{AA} in Pb-Pb collisions at central rapidity measured with ALICE [J. Phy. G, G38 (2011) 124014 & 124080]; Sextrapolate K/ π spectra in pp collisions to forward rapidity: $\frac{d^2 N_{\rm pp}^{\rm K/\pi}}{dp_{\rm T} dy} = \frac{d^2 N_{\rm pp}^{\rm K/\pi}}{dp_{\rm T} dy}|_{y=0} \times \exp[-\frac{1}{2}(\frac{y}{\sigma_y})^2]$ with σ_y =3.3 estimated from PYTHIA and PhoJet (error~15%); Solution get K/ π spectra in Pb-Pb collisions at forward rapidity via: $\frac{d^2 N_{AA}^{K/\pi}}{dp_T dy} = \langle T_{AA} \rangle \times R_{AA}^{K/\pi} |_{y=0} \times \frac{d^2 \sigma_{pp}^{K/\pi}}{dp_T dy}$ varying K/ π R_{AA} between 0 and 200% to estimate the systematic uncertainty on unknown quenching effect at forward rapidity.

 produce the K/π decay muon background in Monte-Carlo with fast detector simulation.

Efficiency Correction

In pp collisions:

 efficiency from simulation using beauty signals from NLO pQCD predictions as inputs;
 systematic uncertainty on misalignment 1%p_T (in GeV/c).

In Pb-Pb collisions:

the centrality dependence of tracking efficiency is estimated via embedding procedure;
efficiency drops by 4±1% in the 10% most central collisions w.r.t. peripheral collisions.

Friday, August 17, 12

Reference in pp collisions

Data well described by FONLL calculations in pp collisions at $\sqrt{s}=2.76$ TeV, similar agreement found in pp collisions at $\sqrt{s}=7$ TeV [Phys. Lett. B708 (2012) 265]; **ØFONLL** predicts that muons from beauty decays dominate for *p*_T≳6 GeV/*c*.

p_{T} -differential R_{AA} of Muons from HF Decays

Suppression is observed and is independent of p_T;
 stronger suppression in central collisions than in peripheral collisions.

Centrality Dependence of R_{AA} of HF-Decay Muons

The suppression of muons from heavy flavour decays in high p_{T} range at forward rapidity exhibits a strong increase with increasing centrality; © reaching a factor of about 3-4 in the 10%most central collisions; \odot in this p_T region, beauty contribution is dominant in pp collisions, according to FONLL calculations.

Comparison with Energy Loss Calculations

talk in this session A. Grelli, Friday August 17th 14:00

suppression of muons from heavy flavour decays at forward rapidity is similar to that of D mesons at central rapidity;
 model implementing radiative energy loss (BDMPS-ASW) and rad.+dissoc. (Vitev) can describe both muon and D meson data;
 small contribution of shadowing is expected.

Friday, August 17, 12

Comparison with Electrons

The suppression of muons from heavy flavour decays at forward rapidity also consistent with that of heavy flavour decay electrons at central rapidity within uncertainties.

talk in this session S. Sakai, Friday August 17th 16:30

Data Sample & Analysis Method

Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV collected in Nov. 2011.

Event and inclusive muon selections: The same as those in R_{AA} analysis (in 0-80%); 1.8x10⁷ events with muon high p_T trigger.

analysis method	reference flow
Event Plane (EP)	VZERO (η>0)
Lee-Yang Zeros (LYZ)	full VZERO

p_{T} -differential v_{2} of Inclusive Muons

Inclusive muon v₂ is measured up to 10 GeV/c (the background is not subtracted);

results from LYZ are systematically lower than those from EP method: fluctuations or non-flow correlations are suppressed;
 indication for larger v₂ in semi-central collisions than in central collisions.

a strong suppression of high p_T muons from heavy flavour decays is observed;

 \odot no significant dependence on p_T in 4< p_T <10 GeV/c;

it is similar to that of electrons from heavy flavour decays and D mesons at central rapidity.

Observed non-zero v₂ for inclusive muons: background subtraction ongoing to obtain HF-decay muon v₂.
Thanks!

Heavy Flavour Physics at LHC

Heavy flavours in pp collisions:

- baseline for pA and AA collisions;
- test NLO pQCD in a new energy domain.

Heavy Flavours in AA collisions:

tomography of QCD medium,

- open heavy flavour quenching in QCD medium,
 - heavy flavours expected to lose less energy than light flavours (dead cone effect), not observed at RHIC [Phys. Rev. D69 (2004) 114003],
 - O color charge dependence of parton energy loss, $\Delta \, {\rm E_g} \! > \! \Delta \, {\rm E_q}$ [Phys. Rev. D71 (2005)

054027],

RAA(light hadron)<RAA(D)<RAA(B);</p>

azimuthal anisotropic flow, $v_n(p_t, \eta)$,

 Ø low p⊤ region: initial conditions of QCD medium, degree of thermalization of heavy quarks in QGP,

O high p_T region: path length dependence of heavy flavour energy loss.

Analysis Strategy: RAA of muons from HF Decays

Sextrapolate K/ π spectra from central to forward region in Pb-Pb collisions:

$$\frac{1}{N_{AA}^{ev}} \cdot \frac{dN_{AA}^{K/\pi}}{dp_t dy} = n_y \times \frac{1}{N_{AA}^{ev}} \cdot \frac{dN_{AA}^{K/\pi}}{dp_t} |_{y=0} \times \exp\left[-\frac{1}{2}\left(\frac{y}{\sigma_y}\right)^2\right]$$

Produce decay muon at forward rapidity:

 $\frac{1}{N_{\mathrm{AA(pp)}}^{\mathrm{ev}}} \frac{dN_{\mathrm{AA(pp)}}^{\mu \leftarrow \mathrm{K/\pi}}}{dp_{\mathrm{t}}}|_{-4 < \eta < -2.5} = \frac{1}{N_{\mathrm{AA(pp)}}^{\mathrm{ev}}} \int_{\Delta\eta} d\eta \frac{dN_{\mathrm{AA(pp)}}^{\mu \leftarrow \mathrm{K/\pi}}}{dp_{\mathrm{t}} d\eta} \Leftarrow \frac{1}{N_{\mathrm{AA(pp)}}^{\mathrm{ev}}} \frac{dN_{\mathrm{AA(pp)}}^{\mathrm{K/\pi}}}{dp_{\mathrm{t}} d\eta}$

 $\textcircled{O} \text{Background subtraction and calculate } R_{\text{AA}} \text{ of } \mu \leftarrow \text{HF:} \\ R_{\text{AA}}^{\mu \leftarrow \text{HF}} = \frac{1}{\langle T_{\text{AA}} \rangle} \cdot \frac{1}{N_{\text{AA}}^{\text{ev}}} \cdot \frac{dN_{\text{AA}}^{\text{incl } \mu}/dp_{\text{t}}}{d\sigma_{\text{pp}}^{\mu \leftarrow \text{HF}}/p_{\text{t}}} - n_{y} \times D_{\text{AA}}(p_{\text{t}}) \cdot R_{\text{AA}}^{\mu \leftarrow \pi}(p_{\text{t}}, n_{y} = 1) \cdot \frac{d\sigma_{\text{pp}}^{\mu \leftarrow \text{K}/\pi}/dp_{\text{t}}}{d\sigma_{\text{pp}}^{\mu \leftarrow \text{HF}}/p_{\text{t}}}$

Systematic Uncertainty

pp reference	
detector response	3%
alignment	1%xp+ (in GeV/c)
background subtraction	14-17% (depending on p+)
inclusive muon yields in Pb-Pb collisions	
detector response	3.5%
alignment	1%xp+ (in GeV/c)
centrality dependence of efficiency	1%
background estimation in Pb-Pb collisions	
decay muon yields in pp collisons	17%
decay muon R _{AA}	14-17%
K/π difference	up to 9% at p+=10 GeV/c
rapidity extrapolation	0-14% (20%) in central (peripheral) collisions
normalization	
cross section in pp collisions	1.9%
<t<sub>AA></t<sub>	4-7% depending on centrality

Comparison to D-mesons Data

The centrality dependence of muon from heavy flavour decays at forward rapidity is similar to that of D mesons at mid-rapidity

Event Plane Fattening & Resolution Estimation

Event Plane Fattening:

- Equalization of the signal from all the 64 VZERO channels (32 per hodoscope);
- Recentering, twisting and rescaling of VZERO event-plane cumulants,

 $Q_{2,x} = \langle Q_{2,x} \rangle + A^+ [\cos 2\Psi_2 + \Lambda^+ \sin 2\Psi_2], \quad Q_{2,y} = \langle Q_{2,y} \rangle + A^- [\cos 2\Psi_2 + \Lambda^- \sin 2\Psi_2]$ parameters extracted from mean & RMS of Q_{2,x}, Q_{2,y} & Q_{2,x}Q_{2,y};

Sourier flattening technique using one single parameter <sin8 Ψ_2 >

Event Plane resolution estimation: 3 sub-events method (VOA inner rings, VOA outer rings and VOC), $< \cos n(\Psi_m^a - \Psi_R) >= \sqrt{\frac{<\cos n(\Psi_m^a - \Psi_m^b) > <\cos n(\Psi_m^a - \Psi_m^c) > }{<\cos n(\Psi_m^b - \Psi_m^c) > }}$

Centrality Dependence of Inclusive Muon v2

 Magnitude of v₂ is larger in semi-central collisions than that in central collisions.
 outlook: implement Background Subtraction and obtain v₂ of muons from heavy flavour decays.

Friday, August 17, 12

ALICE