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Outline/Motivation 

Multiplicity Ratio fluctuation:  
•  Dynamical fluctuation of globally conserved quantities like (net baryon, 

net strange, net charge, isospin) over limited phase space (grand 
canonical ensemble (GCE) picture) 

–  Important probe in the context of phase transition. 

•  Any non-monotonic behavior of the energy dependence of fluctuation. 
–  Important probe in the context of critical phenomenon. 
 
 
 

Correlation: 
•  Correlation of charge-to-neutral pion 

–  One of the very few observable that is sensitive to QCD chiral phase transition.  
–  Sensitive to possible formation of domains of Disoriented Chiral Condensate (DCC). 
 

•  Transverse momentum correlation  
–  Sensitive to critical phenomena, temperature fluctuation. 
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RHIC Beam Energy Scan program  
RHIC BES program : 
  
To explore QCD phase 
diagram 
Over a wide range of baryon 
chemical potential. 
 
In 2010-11 STAR has taken 
data at 7.7, 11.5, 19.6, 27, 39 
(and 62.4, 200) GeV energies. 
 
E n e r g y d e p e n d e n c e o f 
various observables have 
been studied for the search of 
possible critical phenomena. 
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STAR experimental setup 
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Measurement at STAR 
(energy range of 7.7-200 GeV) 

•  STAR measurements at mid-rapidity ( -1 < η <1) 
–  Measured identified particles from TPC+TOF à kaon, pions, protons multiplicity 
–  Measured inclusive particles from TPC à charged particle multiplicity & 

transverse momentum. 

•  STAR measurements at forward rapidity ( -3.7 < η <-2.8) 
–  Measured identified particles from PMD à photon multiplicity (dominantly π0) 
–  Measured inclusive charged particles from FTPC à dominantly for π+ and π- 

multiplicity 
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Centrality	  selecDon	  is	  done	  using	  uncorrected	  charged	  track	  mulDplicity	  from	  TPC.	  
	  
	  

All	  observables	  are	  corrected	  for	  centrality	  bin-‐width	  effect.	  	  (see	  X.	  Luo’s	  talk)	  



Observables are constructed out of ratio of factorial moment over mean multiplicity 

à Sensitive to dynamical fluctuation of ratio of multiplicity. 
à Zero for Poissonian fluctuation. 
à No explicit efficiency dependence. 

      Observable for ratio fluctuation 
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tector e�ect like mis-identification, the role of resonances
and centrality dependance respectively on the proposed
variables. In section VI we have calculated the sensitivity
of the variables on DCC event fraction and pion fractions
in DCC events. For studying the experimental sensitiv-
ity of DCC, we have studied various non-DCC models
in section VII and implemented DCC in a Monte-Carlo
based events in section VIII. We summarize in section
IX.

II. METHOD

Fluctuation of particle ratios has been addressed previ-
ously in case of conserved quantities like net strangeness
in terms of kaon-to-pion ratio and net baryons in terms
of proton to pion ratios. Relevant to our case is the
study of photon to charge particle multiplicity ratio.
Observables used in such cases are designed in such a
way so as to eliminate the statistical fluctuations and
at the same time be robust against detector ine⇥ciency.
A simple way of implementing detector e⇥ciencies in
terms of a binomial probability distribution function say
of the form P (n,N, ⇧) = NCn ⇧n(1 � ⇧)N�n would re-
veal the fact that the second moment of observed mul-
tiplicity n is not proportional to second moment of pro-
duced multiplicity N . The e⇥ciency term ⇧ does not
factorize for quantities like variance, skewness and kur-
tosis1. However the quantities like observed second and
higher order factorial moments comes out to be pro-
portional to the measured corresponding factorial mo-
ments like ⌅n(n � 1)⇧ = ⇧2⌅N(N � 1)⇧. ⌅n⇧ = ⇧ ⌅N⇧.
⌅2
n = ⇧2⌅2

N + ⇧(1� ⇧) ⌅N⇧.
n ⇤ detected , N ⇤ incident , ⇧ ⇤ detection e⇥ciency

Ratios of various factorial moments with powers of
mean multiplicity would simply cancel the explicit e⇥-
ciency dependence. In case of correlation of multiplici-
ties, there could be more complicated detector e�ects like
mis-identification of one species in the form of another,
decay and resonance production. This could lead to spu-
rious correlation a�ecting the final results. Also in case
of heavy ion collisions there are centrality and system
size dependence. If heavy-ion collisions are assumed to
be linear superpositions of multiple hadronic collisions,
then variables are supposed to show number of source
scaling [23]. Based on similar context and considering
various other aspects of particle ratio-fluctuation, two
observables were introduced earlier as measure of � � ch-
ratio fluctuations. ⇤��ch

dyn was introduced in Ref [18] and

used by STAR Collaboration [19, 20] and r��ch
m,1 was intro-

duced by Minimax collaboration[21]. The variable ⇤dyn

1 variable D = 4
�
�Q2

⇥
/Nch where Q2 is the variance of the net

charge(N+ � N�) in Ref[1] gives di⇥erent values for QGP and
pion gas but depends on e⇤ciency.

is defined as

⇤��ch
dyn =

⌅Nch(Nch � 1)⇧
⌅Nch⇧2

+
⌅N�(N� � 1)⇧

⌅N�⇧2
� 2

⌅NchN�⇧
⌅N�⇧ ⌅Nch⇧

(1)

⇤M�N
dyn =

⌅M(M � 1)⇧
⌅M⇧2

+
⌅N(N � 1)⇧

⌅N⇧2
� 2

⌅MN⇧
⌅M⇧ ⌅N⇧(2)

which for Poissonian case should give zero. The variable
rm,1 is defined as

r��ch
m,1 =

⌅Nch(Nch � 1).. (Nch �m+ 1) N�⇧ ⌅Nch⇧
⌅Nch(Nch � 1)..(Nch �m)⇧ ⌅N�⇧

. (3)

It is designed such that for all the moments it gives a
value equal to 1 for Poisson case and higher order mo-
ments show larger sensitivity to signals. In this section
we would like to discuss the applicability, robustness and
sensitivity of these two variable for � � ch correlation.
Since we are interested in fluctuation of ratio of multi-
plicities let us consider f =

N⇥0

(N⇥0+N⇥++N⇥� ) ⇥ N�

N� +2Nch

to be the neutral pion fraction. The idea is that by using
proper combinations of moments we can eliminate the ef-
ficiency dependence and express our observable in terms
of the fluctuation of the fraction f . The most e⇥cient
way of studying the moments including the dynamical
and detector e�ect is to follow the generating function
approach [21] where we define,

G(z) =
⇥�

N=0

zN P (N) (4)

where P (N) denotes the distribution of parent multiplic-
ity where , N = N0+Nch denotes sum of all neutral and
charged pions. Di�erent moments are calculated by tak-
ing derivatives of G(z) w.r.to z evaluated at z = 1. Con-
sidering the fact that the neutral pions are distributed
according to the probability P(f) the generating func-
tion has to be modified accordingly

G(zch, z0) =

1⇥

0

df P(f)
�

N

P (N) [fz0 + (1� f)zch]
N .

(5)
The distribution P(f) is the event-by-event measured
distribution of neutral pion fraction. Isospin symmetry
for a pion gas corresponds to a generic case of pion pro-
ductions for which P(f) = ⇥(f�1/3). In case of DCC like
events[3, 5] we have P(f) = 1/2

⌃
f . For propagation of

generating function to include the decay of neutral pions
to observed photons we apply the “cluster decay theo-
rem” [22]. We can express the overall generating function
as

Gobs (zch, z�) = G (gch (zch) , g0 (z�)) (6)

where g0(z�) = z2� considering the fact that every neutral
cluster decays into two photons and the charge particles
do not decay, gch(zch) = zch. To make the scenario more
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duced multiplicity N . The e⇥ciency term ⌃ does not
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N� +2Nch

to be the neutral pion fraction. The idea is that by using
proper combinations of moments we can eliminate the ef-
ficiency dependence and express our observable in terms
of the fluctuation of the fraction f . The most e⇥cient
way of studying the moments including the dynamical
and detector e�ect is to follow the generating function
approach [21] where we define,

G(z) =
⇥�

N=0

zN P (N) (6)

where P (N) denotes the distribution of parent multiplic-
ity where , N = N0+Nch denotes sum of all neutral and
charged pions. Di�erent moments are calculated by tak-
ing derivatives of G(z) w.r.to z evaluated at z = 1. Con-
sidering the fact that the neutral pions are distributed
according to the probability P(f) the generating func-
tion has to be modified accordingly

G(zch, z0) =
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0

df P(f)
�

N
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(7)
The distribution P(f) is the event-by-event measured
distribution of neutral pion fraction. Isospin symmetry
for a pion gas corresponds to a generic case of pion pro-
ductions for which P(f) = ⇥(f�1/3). In case of DCC like
events[3, 5] we have P(f) = 1/2

⌃
f . For propagation of

generating function to include the decay of neutral pions
to observed photons we apply the “cluster decay theo-
rem” [22]. We can express the overall generating function
as

Gobs (zch, z�) = G (gch (zch) , g0 (z�)) (8)

where g0(z�) = z2� considering the fact that every neutral
cluster decays into two photons and the charge particles

Phys. Rev. C 66, 044904 (2002) 

 Sign of νdyn : 
 

-  Negative : dominated by correlation. 
-  Positive   : could either be anti-correlation or dominated by fluctuation.  

correlation	  Individual fluctuations	  
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to the measured corresponding factorial moments like
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moments with powers of mean multiplicity would sim-
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correlation of multiplicities, there could be more compli-
cated detector e�ects like mis-identification of one species
in the form of another, decay and resonance production.
This could lead to spurious correlation a�ecting the fi-
nal results. Also in case of heavy ion collisions there
are centrality and system size dependence. If heavy-ion
collisions are assumed to be linear superpositions of mul-
tiple hadronic collisions, then variables are supposed to
show number of source scaling [23]. Based on similar
context and considering various other aspects of par-
ticle ratio-fluctuation, two observables were introduced
earlier as measure of � � ch-ratio fluctuations. ⇤��ch

dyn

was introduced in Ref [18] and used by STAR Collab-
oration [19, 20] and r��ch
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/Nch where Q2 is the variance of the net

charge(N+ � N�) in Ref[1] gives di⇥erent values for QGP and
pion gas but depends on e⇤ciency.

collaboration[21]. The variable ⇤dyn is defined as

⇤��ch
dyn =

⇤Nch(Nch � 1)⌅
⇤Nch⌅2

+
⇤N�(N� � 1)⌅

⇤N�⌅2
� 2

⇤NchN�⌅
⇤N�⌅ ⇤Nch⌅

(1)
which for Poissonian case should give zero. The variable
rm,1 is defined as

r��ch
m,1 =

⇤Nch(Nch � 1).. (Nch �m+ 1) N�⌅ ⇤Nch⌅
⇤Nch(Nch � 1)..(Nch �m)⌅ ⇤N�⌅
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It is designed such that for all the moments it gives a
value equal to 1 for Poisson case and higher order mo-
ments show larger sensitivity to signals. In this section
we would like to discuss the applicability, robustness and
sensitivity of these two variable for � � ch correlation.
Since we are interested in fluctuation of ratio of multi-
plicities let us consider f =

N⇥0

(N⇥0+N⇥++N⇥� ) ⇥ 2N�

2N� +Nch

to be the neutral pion fraction. The idea is that by using
proper combinations of moments we can eliminate the ef-
ficiency dependence and express our observable in terms
of the fluctuation of the fraction f . The most e⇥cient
way of studying the moments including the dynamical
and detector e�ect is to follow the generating function
approach [21] where we define,

G(z) =
⇥�

N=0

zN P (N) (3)

where P (N) denotes the distribution of parent multiplic-
ity where , N = N0+Nch denotes sum of all neutral and
charged pions. Di�erent moments are calculated by tak-
ing derivatives of G(z) w.r.to z evaluated at z = 1. Con-
sidering the fact that the neutral pions are distributed
according to the probability P(f) the generating func-
tion has to be modified accordingly

G(zch, z0) =

1⇥

0

df P(f)
�

N

P (N) [fz0 + (1� f)zch]
N .

(4)
The distribution P(f) is the event-by-event measured
distribution of neutral pion fraction. Isospin symmetry
for a pion gas corresponds to a generic case of pion pro-
ductions for which P(f) = ⇥(f�1/3). In case of DCC like
events[3, 5] we have P(f) = 1/2

⇧
f . For propagation of

generating function to include the decay of neutral pions
to observed photons we apply the “cluster decay theo-
rem” [22]. We can express the overall generating function
as

Gobs (zch, z�) = G (gch (zch) , g0 (z�)) (5)

where g0(z�) = z2� considering the fact that every neutral
cluster decays into two photons and the charge particles
do not decay, gch(zch) = zch. To make the scenario more
realistic and taking the advantage of same theorem, one
can include detection e⇥ciencies into the final form of

à Originally designed for the search of Disoriented-chiral condensate (DCC). 
à 1 for Poissonian fluctuation and higher order give higher sensitivity.  
à   Slope (positive −> correlation, negative  −> anti-correlation)  
    of rm,1 vs m indicates nature and signals strength (ξ)  

Phys.  Rev. C 85, 024902 (2012) 

    Observables for particle correlation 
Observable for charge-to-neutral multiplicity correlation:  

Observable for two-particle transverse momentum correlation: 
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FIG. 2: Multiplicity dependence of observables r1,1 and ��dyn as predicted from di⇥erent models. The curves represent the
results from di⇥erent ensembles of Boltzmann gas of pions from eq.?? and eq.?? as described in the text. The markers are
from di⇥erent Monte-Carlo models. The error-bars are statistical.

approximation, the expression given by eq.?? is still valid
with fraction x replaced by xy2.

r��ch
m,1 ⇥ 1� mxy2

(m+ 1)
F (m,xy2) (41)

r��ch
m,1 ⇥ 1� m⇥2

(m+ 1)
F (m, ⇥2) (42)

A functional fit of rm,1 with m to experimental data by
the above expression can restrict the contours of x and
y.

VII. MODEL PREDICTION

In this section we would like to study the behavior of
observables from di�erent models available to describe
heavy ion data. There are theoretical predictions of
isospin fluctuation for a statistical system of pions[? ?
]. It can be shown that a system of Boltzmann gas
of pions in the grand canonical ensemble (GCE), gives
⇤N⇥0⌅ = ⇤N⇥±⌅ = z and one finds mean-square of pion
multiplicity and charge-to-neutral pion correlation to be
related to mean multiplicities as ⇤N⇥0⌅ = ⇤N⇥±⌅ = z

�
N2

⇥0

⇥
= ⇤N⇥0⌅+ ⇤N⇥0⌅2

�
N2

⇥±

⇥
= ⇤N⇥±⌅+ ⇤N⇥±⌅2

⇤N⇥0N⇥±⌅ = ⇤N⇥0⌅ ⇤N⇥±⌅ (43)

where z is the single particle partition function. In ref[?
] it was shown that for an ideal scenario where one as-
sumes the total isospin of the system to be zero, above

mentioned relationships will become complicated. An en-
semble of the total isospin I=0 gives

⇤N⇥0⌅ = ⇤N⇥±⌅ =
z2

3
+

z3

6
(44)

but the mean-square pions multiplicities are modified as

�
N2

⇥0

⇥
⇥ ⇤N⇥0⌅+ z2

3
+

z4

15
�
N2

⇥±

⇥
⇥ ⇤N⇥±⌅+ z4

10
. (45)

We can generalize this result and apply in case of our
observables of � � ch correlation. The dependance on z
can be eliminated and final observables can be expressed
in terms of experimentally observed quantities like mea-
sured multiplicity (say

⇤
⇤Nch⌅ ⇤N�⌅). In this case one

has ⇤N�⌅ = 2 ⇤N⇥0⌅ and ⇤Nch⌅ = ⇤N⇥+ +N⇥�⌅ =
2 ⇤N⇥±⌅ . Also for decay of neutral pions, in case when all
the photons are detected we have2 ⇤2

� ⇥ 2⇤2
⇥0 . 2<C<4

. One can express the mean-square multiplicity to be

�
N2

�

⇥
= 4

�
N2

⇥0

⇥
,
�
N2

ch

⇥
= 2

�
N2

⇥±

⇥
+ 2 ⇤N⇥+N⇥�⌅

(46)

2 For Poissonian case ⇥� =
�

�N�⇥ =
�

2 �N⇥0 ⇥ =
⇤
2⇥⇥0

            Minimax collaboration 
Phys. Rev. D 55, 5667 (1997) 

                 
Phys. Rev. C 72, 044902 (2005) 
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  Ratio fluctuation: Identified particles 

(measurement at mid-rapidity |η|<1) 
 

Monotonic trend in the range  
of 7.7-200 GeV.  
 
 

K/p and p/π are dominated by correlation. 
 
Data are below hadronic model predictions. 

see also Z.Ahammed’s poster 

STAR Preliminary
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  Ratio fluctuation: Identified particles 

STAR Preliminary

STAR Preliminary

STAR Preliminary

Charge dependence of excitation  
function appears at lower energy. 
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Ratio fluctuation: inclusive positive-negative charge 
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Mid-rapidity 
(|η|<0.5) 

Forward-rapidity 
-3.7<η<-2.8  

see B. Sharma’s poster 

Consistent trend with energy at both mid-rapidity and forward rapidity. 
 

Negative value of νdyn indicates dominance of ch+_ ch- correlation at all energies. 

STAR Preliminary
STAR Preliminary
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 ch+ -ch- 
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Measurement at forward rapidity (-3.7 < η < -2.8) : 
 

νdyn(γ-ch) positive for data; mixed event and models are close to Poisson. 
 

Approximate Central Limit Theorem (CLT) type scaling (χ2/ndf ≈2) for νdyn at 200 GeV. 
 

Energy dependence compared to hadronic model UrQMD. 
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Ratio fluctuation: charge-neutral 

200	  GeV	  
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tector e�ect like mis-identification, the role of resonances
and centrality dependance respectively on the proposed
variables. In section VI we have calculated the sensitivity
of the variables on DCC event fraction and pion fractions
in DCC events. For studying the experimental sensitiv-
ity of DCC, we have studied various non-DCC models
in section VII and implemented DCC in a Monte-Carlo
based events in section VIII. We summarize in section
IX.

II. METHOD

Fluctuation of particle ratios has been addressed previ-
ously in case of conserved quantities like net strangeness
in terms of kaon-to-pion ratio and net baryons in terms
of proton to pion ratios. Relevant to our case is the
study of photon to charge particle multiplicity ratio. Ob-
servables used in such cases are designed in such a way
so as to eliminate the statistical fluctuations and at the
same time be robust against detector ine⇥ciency. A sim-
ple way of implementing detector e⇥ciencies in terms
of a binomial probability distribution function say of
the form P (n,N, ⌅) = NCn ⌅n(1 � ⌅)N�n would reveal
the fact that the second moment of observed multiplic-
ity n is not proportional to second moment of produced
multiplicity N . The e⇥ciency term ⌅ does not factor-
ize for quantities like variance, skewness and kurtosis1.
However the quantities like observed second and higher
order factorial moments comes out to be proportional
to the measured corresponding factorial moments like
⇤n(n � 1)⌅ = ⌅2⇤N(N � 1)⌅. Ratios of various factorial
moments with powers of mean multiplicity would sim-
ply cancel the explicit e⇥ciency dependence. In case of
correlation of multiplicities, there could be more compli-
cated detector e�ects like mis-identification of one species
in the form of another, decay and resonance production.
This could lead to spurious correlation a�ecting the fi-
nal results. Also in case of heavy ion collisions there
are centrality and system size dependence. If heavy-ion
collisions are assumed to be linear superpositions of mul-
tiple hadronic collisions, then variables are supposed to
show number of source scaling [23]. Based on similar
context and considering various other aspects of par-
ticle ratio-fluctuation, two observables were introduced
earlier as measure of � � ch-ratio fluctuations. ⇤��ch

dyn

was introduced in Ref [18] and used by STAR Collab-
oration [19, 20] and r��ch

m,1 was introduced by Minimax

1 variable D = 4
�
�Q2

⇥
/Nch where Q2 is the variance of the net

charge(N+ � N�) in Ref[1] gives di⇥erent values for QGP and
pion gas but depends on e⇤ciency.

collaboration[21]. The variable ⇤dyn is defined as

⇤��ch
dyn =

⇤Nch(Nch � 1)⌅
⇤Nch⌅2

+
⇤N�(N� � 1)⌅

⇤N�⌅2
� 2

⇤NchN�⌅
⇤N�⌅ ⇤Nch⌅

(1)
which for Poissonian case should give zero. The variable
rm,1 is defined as

r��ch
m,1 =

⇤Nch(Nch � 1).. (Nch �m+ 1) N�⌅ ⇤Nch⌅
⇤Nch(Nch � 1)..(Nch �m)⌅ ⇤N�⌅

. (2)

It is designed such that for all the moments it gives a
value equal to 1 for Poisson case and higher order mo-
ments show larger sensitivity to signals. In this section
we would like to discuss the applicability, robustness and
sensitivity of these two variable for � � ch correlation.
Since we are interested in fluctuation of ratio of multi-
plicities let us consider f =

N⇥0

(N⇥0+N⇥++N⇥� ) ⇥ 2N�

2N� +Nch

to be the neutral pion fraction. The idea is that by using
proper combinations of moments we can eliminate the ef-
ficiency dependence and express our observable in terms
of the fluctuation of the fraction f . The most e⇥cient
way of studying the moments including the dynamical
and detector e�ect is to follow the generating function
approach [21] where we define,

G(z) =
⇥�

N=0

zN P (N) (3)

where P (N) denotes the distribution of parent multiplic-
ity where , N = N0+Nch denotes sum of all neutral and
charged pions. Di�erent moments are calculated by tak-
ing derivatives of G(z) w.r.to z evaluated at z = 1. Con-
sidering the fact that the neutral pions are distributed
according to the probability P(f) the generating func-
tion has to be modified accordingly

G(zch, z0) =

1⇥

0

df P(f)
�

N

P (N) [fz0 + (1� f)zch]
N .

(4)
The distribution P(f) is the event-by-event measured
distribution of neutral pion fraction. Isospin symmetry
for a pion gas corresponds to a generic case of pion pro-
ductions for which P(f) = ⇥(f�1/3). In case of DCC like
events[3, 5] we have P(f) = 1/2

⇧
f . For propagation of

generating function to include the decay of neutral pions
to observed photons we apply the “cluster decay theo-
rem” [22]. We can express the overall generating function
as

Gobs (zch, z�) = G (gch (zch) , g0 (z�)) (5)

where g0(z�) = z2� considering the fact that every neutral
cluster decays into two photons and the charge particles
do not decay, gch(zch) = zch. To make the scenario more
realistic and taking the advantage of same theorem, one
can include detection e⇥ciencies into the final form of

r1,1 is below 1 for γ-ch (anti-correlation) and above 1(correlation) for ch+-ch- & UrQMD. 
 

rm,1 vs m for γ-ch shows presence of anti-correlation at all energies. Data excludes 
generic pion production (Poisson) scenario and hadronic model predictions 
(correlated production from resonances). 

Particle correlation: charge-to-neutral 
Minimax DCC observable 
   <1 (anti-correlation) 
   >1 (correlation) 

STAR Preliminary
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tector e�ect like mis-identification, the role of resonances
and centrality dependance respectively on the proposed
variables. In section VI we have calculated the sensitivity
of the variables on DCC event fraction and pion fractions
in DCC events. For studying the experimental sensitiv-
ity of DCC, we have studied various non-DCC models
in section VII and implemented DCC in a Monte-Carlo
based events in section VIII. We summarize in section
IX.

II. METHOD

Fluctuation of particle ratios has been addressed previ-
ously in case of conserved quantities like net strangeness
in terms of kaon-to-pion ratio and net baryons in terms
of proton to pion ratios. Relevant to our case is the
study of photon to charge particle multiplicity ratio. Ob-
servables used in such cases are designed in such a way
so as to eliminate the statistical fluctuations and at the
same time be robust against detector ine⇥ciency. A sim-
ple way of implementing detector e⇥ciencies in terms
of a binomial probability distribution function say of
the form P (n,N, ⌅) = NCn ⌅n(1 � ⌅)N�n would reveal
the fact that the second moment of observed multiplic-
ity n is not proportional to second moment of produced
multiplicity N . The e⇥ciency term ⌅ does not factor-
ize for quantities like variance, skewness and kurtosis1.
However the quantities like observed second and higher
order factorial moments comes out to be proportional
to the measured corresponding factorial moments like
⇤n(n � 1)⌅ = ⌅2⇤N(N � 1)⌅. Ratios of various factorial
moments with powers of mean multiplicity would sim-
ply cancel the explicit e⇥ciency dependence. In case of
correlation of multiplicities, there could be more compli-
cated detector e�ects like mis-identification of one species
in the form of another, decay and resonance production.
This could lead to spurious correlation a�ecting the fi-
nal results. Also in case of heavy ion collisions there
are centrality and system size dependence. If heavy-ion
collisions are assumed to be linear superpositions of mul-
tiple hadronic collisions, then variables are supposed to
show number of source scaling [23]. Based on similar
context and considering various other aspects of par-
ticle ratio-fluctuation, two observables were introduced
earlier as measure of � � ch-ratio fluctuations. ⇤��ch

dyn

was introduced in Ref [18] and used by STAR Collab-
oration [19, 20] and r��ch

m,1 was introduced by Minimax

1 variable D = 4
�
�Q2

⇥
/Nch where Q2 is the variance of the net

charge(N+ � N�) in Ref[1] gives di⇥erent values for QGP and
pion gas but depends on e⇤ciency.

collaboration[21]. The variable ⇤dyn is defined as

⇤��ch
dyn =

⇤Nch(Nch � 1)⌅
⇤Nch⌅2

+
⇤N�(N� � 1)⌅

⇤N�⌅2
� 2

⇤NchN�⌅
⇤N�⌅ ⇤Nch⌅

(1)
which for Poissonian case should give zero. The variable
rm,1 is defined as

r��ch
m,1 =

⇤Nch(Nch � 1).. (Nch �m+ 1) N�⌅ ⇤Nch⌅
⇤Nch(Nch � 1)..(Nch �m)⌅ ⇤N�⌅

. (2)

It is designed such that for all the moments it gives a
value equal to 1 for Poisson case and higher order mo-
ments show larger sensitivity to signals. In this section
we would like to discuss the applicability, robustness and
sensitivity of these two variable for � � ch correlation.
Since we are interested in fluctuation of ratio of multi-
plicities let us consider f =

N⇥0

(N⇥0+N⇥++N⇥� ) ⇥ 2N�

2N� +Nch

to be the neutral pion fraction. The idea is that by using
proper combinations of moments we can eliminate the ef-
ficiency dependence and express our observable in terms
of the fluctuation of the fraction f . The most e⇥cient
way of studying the moments including the dynamical
and detector e�ect is to follow the generating function
approach [21] where we define,

G(z) =
⇥�

N=0

zN P (N) (3)

where P (N) denotes the distribution of parent multiplic-
ity where , N = N0+Nch denotes sum of all neutral and
charged pions. Di�erent moments are calculated by tak-
ing derivatives of G(z) w.r.to z evaluated at z = 1. Con-
sidering the fact that the neutral pions are distributed
according to the probability P(f) the generating func-
tion has to be modified accordingly

G(zch, z0) =

1⇥

0

df P(f)
�

N

P (N) [fz0 + (1� f)zch]
N .

(4)
The distribution P(f) is the event-by-event measured
distribution of neutral pion fraction. Isospin symmetry
for a pion gas corresponds to a generic case of pion pro-
ductions for which P(f) = ⇥(f�1/3). In case of DCC like
events[3, 5] we have P(f) = 1/2

⇧
f . For propagation of

generating function to include the decay of neutral pions
to observed photons we apply the “cluster decay theo-
rem” [22]. We can express the overall generating function
as

Gobs (zch, z�) = G (gch (zch) , g0 (z�)) (5)

where g0(z�) = z2� considering the fact that every neutral
cluster decays into two photons and the charge particles
do not decay, gch(zch) = zch. To make the scenario more
realistic and taking the advantage of same theorem, one
can include detection e⇥ciencies into the final form of

 
 

Models are based on assumption that in case of Disoriented Chiral Condensate  
Formation(DCC) àdistribution of neutral pion fraction P(f) gets modified : 

 P(f) = δ(f-1/3) (generic production) à P(f) = 1/(2√f) (DCC). 
     

Particle correlation: charge-to-neutral 
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Particle correlation: inclusive charge pT 
See J.Novak’s poster 

STAR Preliminary

7.7 GeV Au+Au

11 GeV Au+Au

19.6 GeV Au+Au

39 GeV Au+Au

62 GeV Au+Au

200 GeV Au+Au

Centrality and energy dependence of  
<Δpt,iΔpt,j> : 
 

•  Increases in peripheral collisions. 

•  Smoothly increases with energy. 

2 

STAR Preliminary

Correlation scaled with <<pT>>: 
 

•  Most central data points show monotonic  
     decrease below 39 GeV. 
 

•  UrQMD reproduces trend, lies below data. 

•  Difference with CERES, e.g. acceptance is 
under investigation. 

CERES point- Nucl. Phys. A727, 97 (2003) Consistent decrease with collision energy. 
LHC	  point-‐	  J.	  Phys.	  G	  	  38	  (2011)	  124095	  

0-5% STAR BES
CERES
UrQMD
ALICE preliminary
STAR (published)
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Summary 
•  For p/π 

–  Monotonic behavior with collision energy. Charge dependence at low energy. 
•  For K/p 

–  Monotonic decrease with collision, dominated by correlated productions. 
•  For K/π 

–  No strong energy dependence. Charge dependent ratio shows monotonic decrease. 
•  For ch+/ch− 

–  Monotonic decrease with collision energy, consistent at both mid & forward rapidity. 
          _____________________________________________________________________________________________________________________________________________________________ 

•  For γ/ch correlation 
–  Anti-correlation signal, decrease in strength within the range 19.6 -200 GeV. 

Conventional hadronic models can not explain data.  
•  For pT correlaion 

–  Weak energy dependence above 39 GeV up to 2.76 TeV but decreases with incident 
energy below 39 GeV. 

             ____________________________________________________________________________________________________________________________________________________________ 
 

 Ratio fluctuations and correlation results studied in the energy range (7.7 - 200 GeV) do not 
show any non-monotonic trend, hadronic models can not fully explain data. 
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  Ratio fluctuation: Identified particles 

(measurement at mid-rapidity |η|<1) 
 

Monotonic trend in the range  
of 7.7-200 GeV.  
 

Charge dependence of excitation  
function appears at lower energy. 
 

K/p and K/π have different trend than  
NA49 data at lower energies.  
Hadronic models cannot explain data. 

p/π 

K/p 

see also Z.Ahammed’s poster 
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Measurement at forward rapidity 
For a given multiplicity νdyn (γ-ch)  
is lower for lower energy 
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Ratio fluctuation: charge and photon 

STAR Preliminary
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–  Non-zero dynamical signal which has anti-correlation at top centrality   
     (Anti-correlation : consistent with the picture of QCD Chiral Phase transition?  
      More theoretical inputs needed) 

STAR Preliminary
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•  The	  lines	  are	  
gamma	  
distribuDons	  fit	  
to	  the	  data	  

•  The	  mean	  
decreases	  with	  
energy	  from	  200	  
GeV	  to	  19.6	  Gev	  
then	  increases	  to	  
7.7	  GeV	  
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 Incident Energy Dependence of Transverse 
Momentum Correlations in Au+Au collisions at  

!sNN = 7.7 - 200 GeV in STAR  
John Novak, for the STAR Collaboration (MSU)!

Abstract 
 It has been proposed that one signal of the critical point could be a non-monotonic change in the value of transverse momentum (pt) correlations as a function of 

centrality and/or incident energy [1]. Accordingly, we present results for two-particle pt correlations as a function of event centrality for Au+Au collisions at !sNN = 7.7, 11.5, 
19.6, 39, 62.4 and 200 GeV at RHIC, extending our previous work [2] to lower incident energies. The pt correlations are calculated as a function of centrality and collision 
energy. We have studied the energy dependence of the square root of the correlations ( <"pt,i "pt,j> ) divided by the event-wise average transverse momentum ( <<pt>> ). 
These results are compared to measurements from other experiments as well as UrQMD model calculations.   
 
[1] H. Heiselberg, Phy. Rep. 351, 161 (2001); [2] STAR: Phys. Rev. C 72, 044902 (2005); [3] S. Heckel et al. [ALICE Collaboration], J. Phys.G: Nucl. Part. Phys. 38 (2011) 
124095; [4] D. Adamova et al. [CERES Collaboration], Nucl. Phys. A727, 97 (2003)  

The STAR Collaboration:  http://drupal.star.bnl.gov/STAR/presentations 

Motivation 
This is a critical point search 

We are looking for “a nonmonotonic change in pt 
correlations as a function of centrality and/or as the 

incident energy is raised”  
 

Phys. Rev. C 72, 044902 (2005) 
Nonmonotonic behavior of any fluctuation 

observable could be indicative of the critical point. 

Analysis Cuts 
pt range: 0.15 GeV/c < pt < 2.0 GeV/c 

|DCA| < 1 cm   
VR < 2 cm 

|"| < 1 
Required at least one TOF hit 

Definitions 

!pt ,i!pt , j =
1

Nevent
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NK Nk "1( )k=1

Nevent
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pt = pt k
k=1
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Nevent pt k = pt ,i
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!"#$
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Nk

Two-particle pt correlation: 

To remove non-statistical fluctuations in <<pt>> 
arising from variations in centrality, <<pt>> was 

calculated as a function of event multiplicity. 

Motivation for Scaling 
<#pt,i#pt,j> is a parameter which is sensitive to 

energy and centrality. It may also be sensitive to 
other event parameters. Scaling isolates non-

trivial signals. 
Scaling observable with multiplicity to remove 

1/N scaling 
 
 

Scaling with average transverse momentum to 
remove energy and centrality dependence of pt 
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•  Scaled correlations strongly 

decrease with decreasing 
energy below 39 GeV 

•  We agree with previous 
STAR results 

•  UrQMD reproduces the trend 
of these data. 

•  We are in disagreement with 
CERES 

•  Our disagreement with 
CERES may be due to 
acceptance effects or 
differences in the pt cut 

•  CERES used:  
        0.1GeV/c < pt < 1.5 GeV/c 

<pt> Spectra – Central Bin 
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•  The mean 
decreases with 
energy from 200 
GeV to 19.6 GeV 
then increases 

•  The lines are 
gamma 
distribution fits 
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Methodology 

Summary 

Scale with dN/d" 
•  Correlation 

observable 
scaled with 
multiplicity 

•  The multiplicity 
values used in 
this calculation 
are uncorrected 

The average pt per event is calculated as a function of the 
multiplicity and the correlation parameter is calculated with 

respect to the average pt. 
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•  The quantity                                  

decreases strongly with incident energy 

below 39 GeV 

•  No non-monotonic behavior is observed 
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•  Below 19.6 GeV 
<<pt>> 
increases with 
decreasing 
energy 

•  the scale of 
variation is 
much smaller 
than that seen in 

  
 
•  The inset shows 

<<pt>> for the 
central bin as a 
function of !sNN  
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generating function. We consider the observing and non-
observing as different decay modes with probability equal
to the detection efficiency. So for charged and neutral
clusters we redefine

gch(zch) = (1− εch) + εchzch (6)

g0(zγ) = ((1 − εγ) + εγzγ)
2

Here εch is the efficiency of charge particle detection and
εγ is the efficiency of detecting a photon coming from de-
cay of a neutral pion. We can calculate various factorial
moments of multiplicity with detector efficiency folded in
terms of derivatives of final generating function. We can
define a generalized factorial moment as

fm,n=
∂m,nGobs(zch, zγ)

∂zmch ∂z
n
γ

∣

∣

∣

∣

zch=zγ=1

=

〈

Nch! Nγ !

(Nch −m)! (Nγ − n)!

〉

(7)
It is convenient to express our observables given in eq.1
and eq.2 in terms fm,n as

νγ−ch
dyn =

f20
f210

+
f02
f201

− 2
f11

f10 f01
, rγ−ch

m,1 =
fm1 f10

f(m+1)0 f01
(8)

Using eq. 4, eq. 5 and eq. 7 we can express few factorial
moments in terms efficiency and average of neutral pion
fraction.

f10 = 〈1− f〉 εch 〈N〉
f01 = 〈f〉 2εγ 〈N〉
f11 = 〈f (1− f)〉 2εγ εch 〈N (N − 1)〉

f20 =
〈

(1− f)2
〉

ε2ch 〈N (N − 1)〉

f02 =
〈

f2
〉

4ε2γ 〈N (N − 1)〉+ 2ε2γ 〈f〉 〈N〉

Substituting these in eq.1 we obtain

νγ−ch
dyn =

(

〈(1−f)2〉
〈1−f〉2 +

〈f2〉
〈f〉2 − 2 〈f(1−f)〉

〈f〉〈1−f〉

)

〈N(N−1)〉
〈N〉2

+ 1
2〈f〉〈N〉 . (9)

We note here that the for generic case the term inside
the bracket is zero and we have

νγ−ch
dyn

∣

∣

∣

generic
=

1

2 〈f〉 〈N〉
. (10)

Using proper combination of factorial moments and do-
ing a simple method of event mixing one can extract
the generic value of νγ−ch

dyn (see appendix-XA for details).

Subtracting the generic value of νγ−ch
dyn one can get rid of

the last term in eq.9.
So we propose a modified variable νdyn−νgenericdyn given

by

∆νγ−ch
dyn =

(

〈

(1− f)2
〉

〈1− f〉2
+

〈

f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)

×
〈N(N − 1)〉

〈N〉2
. (11)

In ideal scenarios when all the particles are detected
one can approximate g0(zγ) = z2γ and gch(zch) = zch. In
that case one can show using eq.5 and eq.7 that

νγ−ch
dyn

∣

∣

∣

generic
=

1

2 〈N〉 〈f〉
≈

1
√

〈Nch〉 〈Nγ〉
(12)

irrespective of any value of νdyn. So in that case the
observable ∆νdyn can be estimated to be

∆νγ−ch
dyn = νγ−ch

dyn −
1

√

〈Nch〉 〈Nγ〉
(13)

Following the same approach one can express the vari-
able rm,1 as

rγ−ch
m,1 =

〈f(1− f)m〉 〈1− f〉
〈(1− f)m+1〉 〈f〉

. (14)

Now we would like to discuss the sensitivity of these two
variables for a given fraction of DCC like signal. If x-
fraction of events has DCC like domain formation, in
simplistic case one can assume that the distribution of
neutral pion fraction to be a combination of generic and
DCC probability distribution given by

P(f) = x
1

2
√
f

+ (1− x) δ

(

f −
1

3

)

. (15)

So for ∆νdyn we have from eq.11

∆νγ−ch
dyn =

(

〈

(1− f)2
〉

〈1− f〉2
+

〈

f2
〉

〈f〉2
− 2

〈f(1− f)〉
〈f〉 〈1− f〉

)
∣

∣

∣

∣

∣

signal

×
〈N(N − 1)〉

〈N〉2

=
x

5/9

〈N(N − 1)〉
〈N〉2

(16)

which is proportional to the fraction of DCC-like events.
∆νdyn shows very high sensitivity to DCC like signal
but it has dependency on the parent multiplicity and
consequently to the collisions centrality. In later sec-
tion we would discuss this issue in detail. In case
parent distribution is Poissonian, the fluctuation term
〈N(N − 1)〉 / 〈N〉2 would be equal to 1 giving ∆νγ−ch

dyn ∼
x/(5/9).
The robust observable expressed in eq.14 would have

a very particular x dependence given by

rγ−ch
m,1 = 1−

mx

(m+ 1)
F (m,x) (17)

where the function F (m,x) is given by

F (m,x) =
1

x + (1− x) 2√
π

(

2
3

)m+1 Γ(m+5/2)
Γ(m+2)

. (18)

For ideal DCC case (x=1), the function F (m,x)=1 for
all values of m. That gives rm,1 = 1/(m+1). For generic
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