

Measurements of charged particle jet properties in pp collisions at $\sqrt{s} = 7$ TeV using ALICE at the LHC

S. K. Prasad for the ALICE Collaboration, Wayne State University, Detroit (email : sprasad@cern.ch)

Introduction

*Jet: a collimated spray of particles originating from the fragmentation of hard scattered partons in pp (or in A-A) collisions [1]

*****Jets provide

- \circ a proxy for high p_{T} partons produced in elementary collisions
- an experimental tool for measuring the parton kinematics
- an unique tool to test perturbative quantum chromodynamics (pQCD)

*****Jet shapes are sensitive to

- the details of the fragmentation process [1]
- \circ the type of parton (quark or gluon) that fragments into hadrons, can be used to distinguish between a quark and a gluon jet

Analysis details

- ♣ pp collisions at $\sqrt{s} = 7$ TeV Event selection : Minimum bias collisions $Vertex (V_7)$ selection: $|V_7| < 10$ cm Total number of events analyzed: 161 M Detector subsystems used: The Time Projection Chamber (TPC) and Inner Tracking System (ITS) for tracking and the V-ZERO and ITS for online trigger Track selection:
 - Charged track reconstruction with the TPC and ITS $\circ |\eta_{\text{track}}| < 0.9$ $\circ p_{T, track} > 0.150 \text{ GeV/c}$

- Measurements in pp collisions:
 - o a baseline for similar measurements in more complex A-A collisions where one expects parton energy loss and change in the jet structure

<u>Charged particle multiplicity in leading jet (N_{ch})</u>

<*N_{ch}*>: Mean number of charged particles within the leading jet

Jet reconstruction

♣Algorithm: Fastjet anti-k_T [2], a sequential recombination clusterizer Resolution parameter R = 0.4, 0.6 $|\eta_{\text{track}}| < 0.9$ $|\eta_{\text{iet}}| < 0.9 - R$ $20 < p_{T, jet} < 100 \text{ GeV/}c$

<u>Radial distribution of p_{T} within the leading jet (p_{T}^{sum})</u>

< p_T^{sum} >: The average value of the scalar p_T sum of all particles produced in the annulus reconstructed at given *r* about the jet axis [Fig.1]

[Fig.1] Illustration of radial distribution of p_T^{sum} about the jet axis

60 < *p*_{T, jet} < 80 GeV/*c*

Reasonable agreement between data and MC models > Error bars: statistical errors; Error bands: systematic errors

Leading charged jet size (R_{80})

 $< R_{80} >$: Mean value of the radius containing 80% of the total jet $p_{\rm T}$ found in the jet cone (R = 0.4, 0.6)

 $> < R_{80} >$ as a function of jet p_T

- \triangleright Decreasing trends of R_{80} with increasing jet p_{T} indicate that high p_{T} jets are more collimated than low p_{T} jets
- > Agreement between data and MC models seems reasonable within uncertainties

References

 P_{T} p_T^{sum} as a function of distance *r* from the jet axis

- \succ Transverse momentum density is largest near the jet axis; decreases with r
- \succ Higher slope in case of high p_{T} jets: jets become more collimated with increasing p_{T}
- Reasonable agreement between the data and MC models

Summary

• Preliminary measurements of charged particle jet properties in pp collisions at $\sqrt{s} = 1$

[1] S. D. Ellis, Z. Kunszt and D. E. Soaper Phys. Rev. Lett. 69 3615 (1992) [2] M. Cacciari, G. P. Salam and G. Soyez JHEP 04 63 (2008) [3] T. Sjostrand, S Mrenna and P. Z. Skands JHEP 0605 026 (2006) [4] CDF Collaboration Phys. Rev. D 65 092002 (2005)

7 TeV obtained with ALICE detector using anti- k_{τ} jet finding algorithm presented.

 $<\!\!N_{ch}\!\!>$ increases with increasing jet p_{T} as expected [4].

• Measured p_{T}^{sum} and R_{80} show that jets become more collimated with increasing p_{T} .

Reasonable agreement found between the data and MC models within the

statistical and systematic uncertainties.