Forward Vertex Detector

- full azimuthal coverage, $1.2 < |y| < 2.4$
- 4 stations in each arm placed between collision point and hadron absorbers (no magnetic field)
- 96 ϕ columns of strips with Δr segmentation of 75 μm
- more details in Matt Durham’s poster

measure precise distance of the closest approach projected onto μ pt (DCA$_{ll}$)

- discrimination btw.
 - $a^+ / K^- = \mu$
 - $D / B = \mu$
- prompt muon identification for
 - $W \rightarrow \mu^+ + \nu$
 - Drell-Yan
- high isolation also determination of
 - centrality
 - reaction plane

Data acquired in 2012 engineering Run and physics tasks

- 510 GeV $p+p$ events: 3.3 billion events
- alignment studies
- remove hadronic background in W analysis
- heavy flavor, quarkonia and Drell-Yan
- 200 GeV U+U: few million events
- high occupancy studies
- centrality, reaction plane determination
- 200 GeV Cu+Au: 9 billion events
- heavy flavor, quarkonia and Drell-Yan R_C in Cu-going and Au-going direction
- azimuthal anisotropy using FVTX reaction plane determination
- cosmic data and field-off run
- high level alignment studies

Improvement in di-muon mass resolution

- di-muon mass distribution in J/ψ region from 510 GeV $p+p$ in north arm
 (1.2 $< y < 2.2$) data sample

- Δ-muon opening angle measured by FVTX is not affected by multiple scattering in hadron absorber

Measuring DCA$_{ll}$ resolution with J/ψ di-muon decays

all di-muon decays from J/ψ should have DCA = 0 \pm detector resolution

Real data 510 GeV $p+p$

Mean: -0.2 \pm 1.3 μm
Sigma: 26.6 \pm 0.1 μm

Simulated $D \rightarrow \mu + X$

DCA$_{ll}$ resolution of $\sim 21 \mu$m in agreement with simulation

\sqrt{s}=510 GeV $p+p$, $1.2 < |y| < 2.2$

like-sign subtracted distributions

all di-muons matching FVTX

DCA_{ll} < 50 μm

$DCA_{ll} > 1$ mm

Primary Vertex Determination

U+U event

- primary vertex defined as the point where more tracks share the same crossing (withing DCA resolution)
- method under development

Strategy to count D and B meson decays from single μ DCA$_{ll}$ distribution

$\frac{J/\psi}{D}$

Components to be fit to total DCA$_{ll}$ distribution

Background = hadrons

D and B from a first guess p_t distribution in

Iterate until converge

Selecting di-muon sources with dimuon DCA$_{ll}$ measurement

\sqrt{s}=510 GeV $p+p$, $1.2 < |y| < 2.2$

all di-muons matching FVTX

DCA_{ll}<50 μm: muon pair come from same vertex (resonances, Drell-Yan)

DCA_{ll}>1 mm: dominated by correlated muon pairs with two vertices (c\bar{c}, b\bar{b}, jets)

ACKNOWLEDGMENTS

Office of Nuclear Physics in the Office of Science of the Department of Energy, Brookhaven National Laboratory, Charles University Prague, Columbia University, Fermilab, Institute of Physics Prague, Lawrence Berkeley Laboratory, Los Alamos National Laboratory, New Mexico State University, University of New Mexico, Saclay, University of Colorado