Studies of jet quenching and b-jet identification in PbPb collisions at 2.76 TeV with CMS

Matthew Nguyen
(LLR / École Polytechnique)

for the CMS Collaboration

Quark Matter conference, Washington DC
14th August, 2012
CMS HI Jet Results

- Dijet imbalance and missing p_T
 PRC 84 (2011) 024906
- Fragmentation Functions
 arXiv:1205.5872

Results with 2010 Data

Results with 2011 Data

- Updated dijet imbalance with 2011 data
 PLB 712 (2012) 176
- b-tagged jets
- γ+jet
 arXiv:1205.0206
- Jet R_{AA}
- Jet Shapes
- Updated FFs

This talk

Parallel 1B, Yue-Shi Lai
Parallel 2B, Marguerite Belt Tonjes
Parallel 3B, Pelin Kurt
Parallel 3B, Frank Ma

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIH
The CMS Detector

Silicon tracker used in jet reconstruction and for secondary vertices

EM and hadronic calorimeters used for jet reconstruction
Jet Measurements in PbPb

- Information from all sub-detectors are combined into particle candidates → “Particle flow” event reconstruction [1-2]
- Allows to exploit the excellent resolution of the tracker for the charged hadron component of the jet
- Also includes a fully consistent treatment of electron and muons inside jets
- Particle candidates combined into towers in order to subtract the heavy-ion background

[2] CMS-PAS-PFT-09-001
1. \(<E_T> \) calculated in strips of \(\eta \). Subtract \(<E_T> + \sigma \)

2. Run anti-\(k_T \) algorithm on background-subtracted towers

3. Exclude reconstructed jets and re-estimate background

4. Re-run anti-\(k_T \) algorithm to get final jets

For details see:

Jet Reconstruction Performance

- Jet energy corrections based on PYTHIA simulations
- Corrected jet response close to unity even in central events
 → demonstrates reliability of HI background subtraction

CMS-PAS-HIN-12-004
Dijet Azimuthal Correlations

No significant angular decorrelation of dijets

The pedestal of uncorrelated jets is subtracted using small Δφ events
Uncorrelated Jets

Fraction of leading jets with sub-leading jet passing selection
- \(p_{T,2} > 30 \text{ GeV/c} \)
- \(\Delta \phi_{12} > 2/3 \pi \)

Fraction of jet pairs with \(\Delta \phi_{12} < 1/3 \pi \)
- Small fraction of small \(\Delta \phi_{12} \) jets are subtracted in what follows
- Becomes negligible at large leading jet \(p_T \)
2011 data set shows the centrality evolution of the dijet imbalance more clearly than seen from first 2010 PbPb data.
Dijets in central PbPb are more unbalanced than PYTHIA even at large values of leading jet p_T.

p_T Dependence of Dijet Imbalance

- CMS, $\int L dt = 150 \mu b^{-1}$
- PbPb $\sqrt{s_{\text{nn}}} = 2.76$ TeV
- PYTHIA+HYDJET
- $120 < p_{T,1} < 150$ GeV/c
- $150 < p_{T,1} < 180$ GeV/c
- $180 < p_{T,1} < 220$ GeV/c
- $220 < p_{T,1} < 260$ GeV/c
- $260 < p_{T,1} < 300$ GeV/c
- $300 < p_{T,1} < 500$ GeV/c

$A_J = (p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2})$
- Dijets in reference (pp, PYTHIA) become more balanced with increasing p_T
- $<p_{T,2}/p_{T,1}>$ in PbPb consistent with a constant offset from the reference MC
b-jet Identification

- Long lifetime of b (~1.5 ps) leads to measurable (mm or cm) displaced secondary vertices (SV)

 ![Diagram of b-jet identification]

- Subsequent charm decay may lead to a tertiary vertex
- B-jets are tagged using reconstructed SV’s, using the flight distance of the SV as a discriminating variable
- We then extract the b-jet fraction by a fit to the SV mass
- An alternative tagger based only the impact parameter of the tracks in the jet is used to corroborate the SV performance
Tracking in Heavy Ions

- Standard track reconstruction and selection in heavy ions gives a reasonable efficiency and low fake rate for primary tracks.

- Reconstruction of displaced tracks is computationally intensive in the PbPb environment.

- Additional tracking is run locally inside reconstructed jets to recover secondary tracks.

Plot Description:

- **x-axis:** \(p_T \) (GeV/c) with a range from 1 to 10^2.
- **y-axis:** Tracking performance.
- **Legend:**
 - Pythia
 - Pythia + Hydjet, centrality: 30-100%
 - Pythia + Hydjet, centrality: 0-30%

Graph Title: “Standard” HI Tracking (2011)

Equation:

\[|\eta| < 2.4 \]
b-tagging Performance

Jets are tagged by cutting on discriminating variables

- Simple Secondary Vertex High Efficiency (SSVHE)
- Jet Probability (JP)

- Performance is benchmarked by comparing b-tagging efficiency to efficiency to mis-tag light jets
- SSVHE uses the SV flight distance
- JP uses large impact parameter tracks to estimate a likelihood that tracks come from the primary vertex

Jet Identification in CMS: [CMS-PAS-BTV-11-004](http://www.cern.ch)
b-tagging Performance

Jets are tagged by cutting on discriminating variables
- **Simple Secondary Vertex High Efficiency (SSVHE)**
- **Jet Probability (JP)**

- Performance is benchmarked by comparing b-tagging efficiency to efficiency to mis-tag light jets
- SSVHE uses the SV flight distance
- JP uses large impact parameter tracks to estimate a likelihood that tracks come from the primary vertex

- We use an SSVHE working point which gives a factor of several hundred in light jet rejection for a b-jet efficiency of about 50%
- JP is used for data-driven studies of the SSVHE performance

b-jet Identification in CMS: [CMS-PAS-BTV-11-004](http://example.com/cms-pas-btv-11-004)
Jets are tagged by cutting on discriminating variables

- *Simple Secondary Vertex High Efficiency (SSVHE)*
- *Jet Probability (JP)*

Some degradation of performance in PbPb compared to pp, but still a factor of \(~100\) light jet rejection for \(~45\%\) b-jet efficiency

b-jet Identification in CMS: [CMS-PAS-BTV-11-004](http://example.com)
Secondary Vertex Mass Fits

- After enriching sample in b-jets with the SSVHE tagger, we fit the SV mass distribution.
- Shapes of b and non-b templates taken from MC, normalizations allowed to float.
- The shapes of the non-b templates are cross-checked with a data-driven method.
- The stability of the fits and the shapes of the templates are the dominant sources of systematics uncertainty.
b-Tagging Purity and Efficiency

Purity: b-jet fraction in SV tagged sample extracted from SV mass fit

Efficiency: Fraction of b-jets which are tagged by their SV

- Efficiency is extracted from simulation and with a data-driven method using the JP tagger, i.e., w/o requiring a SV
- For both efficiency and purity, MC is fairly close to data “out of the box”
b-jet to Inclusive Jet Ratio

b-jet fraction = # of tagged jets * purity / efficiency

- b-jet fraction in PbPb larger than MC, but consistent within uncertainties
- pp data are also consistent with MC prediction
b-jet Fraction vs. Centrality

CMS preliminary

$\int L\, dt = 150 \mu\text{b}^{-1}$

PbPb Data

Pythia+Hydjet

Syst. uncertainty

$\sqrt{s_{\text{NN}}} = 2.76$ TeV

$80 < \text{Jet } p_T < 100$ GeV/c

50-100% 20-50% 0-20%

b-jet fraction does not show a strong centrality dependence
b-jet R_{AA}

b-jet fraction double ratio

CMS Preliminary

$\sqrt{s_{NN}} = 2.76$ TeV

$\int L \, dt = 150 \mu b^{-1}$ (PbPb), 231 nb$^{-1}$ (pp)

\bullet Data

\square Syst. uncertainty

$PbPb$ b-jet fraction / pp b-jet fraction

$0 \leq R_{AA} \leq 2$

$R_{AA} = \frac{\text{inclusive jet } R_{AA}}{\text{double ratio}}$

Jet p_T (GeV/c)

Jet p_T (GeV)
Conclusions

• Dijets
 o Imbalance persists to large values of leading jet p_T
 o No significant dependence observed in ratio of subleading jet p_T to leading jet p_T → no strong dependence of fractional energy loss on p_T

• b-jets
 o Fully reconstructed b-jets have been identified in heavy-ion collisions for the first time
 o b-jet fraction in PbPb collisions is consistent with PYTHIA and pp data within fairly sizeable uncertainties