Detailed measurements of charmonium suppression in PbPb collisions at 2.76 TeV with CMS

Dong Ho Moon
(Korea University)

for the CMS Collaboration

Quark Matter conference, Washington DC
14th August, 2012
J/ψ in heavy-ion collisions

- One of the most powerful tools to understand the QGP
 - Heavy quarks created at the early stage and with a large momentum transfer in gluon-gluon fusion.
 - Sequential melting
 - By Debye screening.
 - Can play a role to quantify medium properties (as thermometer).

<table>
<thead>
<tr>
<th>State</th>
<th>J/ψ (1S)</th>
<th>χc (1P)</th>
<th>ψ' (2S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m (GeV/c^2)</td>
<td>3.10</td>
<td>3.53</td>
<td>3.68</td>
</tr>
<tr>
<td>r_0 (fm)</td>
<td>0.50</td>
<td>0.72</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ (1S)</th>
<th>χ_b (1P)</th>
<th>Γ' (2S)</th>
<th>χ'_b (2P)</th>
<th>Γ'' (3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.46</td>
<td>9.99</td>
<td>10.02</td>
<td>10.26</td>
<td>10.36</td>
</tr>
<tr>
<td>0.28</td>
<td>0.44</td>
<td>0.56</td>
<td>0.68</td>
<td>0.78</td>
</tr>
</tbody>
</table>

A. Mocsy
J/ψ in heavy-ion collisions

- At lower p_T
 - PHENIX observed less suppression at mid-rapidity than at forward rapidity
 - ALICE observed less suppression than PHENIX

- At higher p_T
 - CMS measured more suppression than STAR

- At LHC
 - CMS measured more suppression at higher p_T than ALICE at lower p_T

Phys. Rev. Lett. 98 (2007) 232301,
arXiv:1107.0532,
arXiv:1202.1383
J/ψ in heavy-ion collisions

- At lower p_T
 - PHENIX observed less suppression at mid-rapidity than at forward rapidity
 - ALICE observed less suppression than PHENIX

- At higher p_T
 - CMS measured more suppression than STAR
 - CMS measured more suppression at higher p_T than ALICE at lower p_T

The difference between these results can be explained by various mixes of competing effects:
- Sequential melting
- Shadowing or saturation
- Regeneration
CMS detector

- Calorimeters (Electromagnetic & Hadron)
- Beam Scintillator Counters (BSC)
- Hadron Forward Calorimeter (HF)
- Muon Chamber (DT, RPC)
- Inner Tracker (Silicon Strip & Pixel)
- Muon Chamber (CSC, RPC)

Magnetic Field: 3.8 T

| Module | |η| Region |
|--------------|------------------|
| Muon | |η| < 2.4 |
| HCAL | |η| < 5.2 |
| ECAL | |η| < 3.0 |
| Tracker | |η| < 2.5 |
Muon reconstruction

- Excellent muon identification & triggering in muon system.
- Excellent momentum resolution of tracking system.
 - Overall resolution: 1~2 %
Dimuon spectrum in 2011 PbPb

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV

$\gamma(1,2,3S)$

L_{int} (PbPb) = 147 μb$^{-1}$

ρ, ω, ϕ

$\psi(2S)$

J/ψ

$p_T^\mu > 4$ GeV/c

$\mu\mu$ (GeV/c2)

Events/(GeV/c2)
Dimuon spectrum in 2011 PbPb

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV

$\psi(2S)$

$\psi(1,2,3S)$

Bottomonia: Tue 16:45
(Parallel 2D: Guillermo B. Rangel)

Quarkonia: Thu 11:05
(Plenary IVB: Camelia Mironov)

Z, W: Wed 12:00
(Parallel 4C: Lamia Benhabib)

EWK: Thu 9:45
(Plenary IVA: Raphael de Cassagnac)

Open Bottom: Fri 15:40
(Parallel 6A: Mihee Jo)
Prompt/non-prompt J/ψ

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length ($l_{J/\psi}$)

$$l_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}$$
Prompt/non-prompt J/ψ

Inclusive J/ψ

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length ($l_{J/ψ}$)

$$l_{J/ψ} = L_{xy} \frac{m_{J/ψ}}{p_T}$$

This Talk !!!

PAS CMS-HIN-12-014
Prompt/non-prompt J/ψ

This Talk !!!

- Reconstruct opposite sign muon vertex
- 2-D unbinned maximum likelihood fit of dimuon mass and pseudo-proper decay length ($l_{J/ψ}$)

$$l_{J/ψ} = L_{xy} \frac{m_{J/ψ}}{p_T}$$
2011 prompt J/ψ results
R_{AA} of prompt J/ψ vs N_{part}

$$R_{AA} = \frac{L_{pp} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb}}(\text{cent})}}{T_{AA} N_{MB}}$$

CMS PbPb $\sqrt{s_{NN}} = 2.76$ TeV

- Prompt J/ψ

$|y| < 2.4$

$6.5 < p_T < 30$ GeV/c
R_{AA} of prompt J/ψ vs N_{part}

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA} N_{MB}} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb (cent)}}}$$

CMS Preliminary
\[\text{PbPb} \sqrt{s_{NN}} = 2.76 \text{ TeV} \]

- Suppressed by factor 5 in most central

$|y| < 2.4$

$6.5 < p_T < 30 \text{ GeV/c}$

PAS CMS-HIN-12-014

Dong Ho Moon
Quark Matter 2012, Washington DC
R_{AA} of prompt J/ψ vs N_{part}

\[R_{AA} = \frac{L_{pp}}{T_{AA} N_{\text{MB}}} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb}(\text{cent})}} \]

CMS Preliminary
$\sqrt{s_{NN}} = 2.76$ TeV

2011

- No strong dependence on rapidity

CMS Preliminary
$\sqrt{s_{NN}} = 2.76$ TeV

Prompt J/ψ

- $|y| < 1.2$
- $1.2 < |y| < 1.2$
- $1.6 < |y| < 2.4$

$6.5 < p_T < 30$ GeV/c

60-100 %

0-5 %
R_{AA} of prompt J/ψ vs N_{part}

$$R_{AA} = \frac{L_{pp}}{T_{AA} N_{MB}} \frac{N_{\text{PbPb}}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb}}(\text{cent})}$$

- Hint of less suppression at lower p_T

CMS Preliminary
$\text{PbPb}\sqrt{s_{\text{NN}}} = 2.76$ TeV

- 2011
2011 \(\psi(2S) \) results
$\psi(2S)$ PbPb and pp

$|y| < 1.6$ and $6.5 < p_T < 30$ GeV/c

Raw yields ratio ($\psi(2S) / J/\psi$) in PbPb is ~ 2 times smaller than pp.
Raw ratio ($\psi(2S) / J/\psi$) in PbPb is ~5 times larger than pp.
Double ratio of $\psi(2S)$ & J/ψ

\[\frac{R_{\psi(2S)}^{PbPb}}{R_{\psi(2S)}^{PP}} = \left[\frac{N_{\psi(2S)}}{N_{J/\psi}} \right]_{PbPb} / \left[\frac{N_{\psi(2S)}}{N_{J/\psi}} \right]_{PP} \]

3 < p_T < 30 GeV/c

For $p_T > 6.5$ GeV/c, $\psi(2S)$ are more suppressed than J/ψ.
Indication that $\psi(2S)$ less suppressed than J/ψ for $p_T > 3$ GeV/c.
(not more than 2σ significance, limited by pp statistics)
Summary

- **Prompt J/ψ**
 - R_{AA} measured in finer bins than 2010 results
 - Significant suppression observed
 - No strong dependence on p_T and rapidity

- **ψ(2S)**
 - More suppressed than J/ψ at high p_T and mid-rapidity
 - Less suppressed than J/ψ at lower p_T and forward rapidity
 (but not more than 2σ significance)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN
Back up