Very High-p_T Triggered Dihadron Correlations in PbPb Collisions at 2.76 TeV with CMS

Rylan Conway (UC Davis) for the CMS Collaboration

Quark Matter conference, Washington DC 14th Aug, 2012

Motivation

- Measuring the effects of jet quenching can give us important information about energy loss mechanisms in a QGP medium.
- Using high- p_T track correlations we can study jet quenching over a large kinematic range from very low p_T to high p_T
 - Associated particle: $0.5 < p_T < 15$ GeV/c
 - Trigger particle: $20 < p_T < 50 \text{ GeV/c}$
- Provides quantitative constraints on jet quenching models.

CMS Detector

High p_T Single-Track Trigger

- Full 2011 HI Data Set: $L_{int} = 150 \ \mu b^{-1}$
- High p_T Triggers
 - Full track reconstruction is used in HLT
 - Single-Track High- p_T Triggers (Total #events: ~1.55M with p_T >20 GeV/c)

Two Particle Correlations

High-p_T Dihadron Correlations

High-p_T v_n Measurements

Rylan Conway

The ZYAM Procedure

The 2D correlations are averaged over $\Delta \eta$ and projected onto the $\Delta \phi$ -axis to get 1D correlations.

vn Subtraction via the Zero-Yield-At-Minimum procedure

1D Projected Correlation Functions

Calculating the Integrated Yield

Integrated Yields

Long-Range $\Delta \eta$ Subtraction

An alternate method is to use the long-range region to estimate the full flow background (including v_1)

Near-Side I_{AA}

CMS-PAS-HIN-12-010

Near-Side I_{AA}

Away-Side I_{AA}

CMS

Rylan Conway Quark

Away-Side I_{AA}

Near-Side I_{AA} Centrality Dependence

Away-Side I_{AA} Centrality Dependence

$19.2 < p_T^{trig} < 24 \text{ GeV/c}$

Away-Side I_{AA} vs. N_{part}

Away-Side I_{AA} vs. N_{part}

Away-Side I_{AA} vs. N_{part}

CMS-PAS-HIN-12-010

Summary

- Dihadron correlations over a wide kinematic range and high p_{T}
- Contributions from v_2 - v_4 were subtracted •
 - Access to jet-like correlations.
- Integrated yields from the near and away-side were extracted:
 - Near-Side:
 - No modification above 3-4 GeV/c for the associated particle.
 - Enhancement up to factor of 2 is seen at low associated particle p_{T.}
 - <u>Away-Side:</u>
 - Above 4 GeV/c a suppression of ~50% is seen for all centralities up to trigger particle $p_{T} \sim 50$ GeV/c.
 - Below 4 GeV/c: suppression changes to an enhancement of a factor ~4 at the lowest measured associated particle $p_T \sim 0.5$ GeV/c
- Observations consistent with jet quenching and provide quantitative constraints on the models.

CMS-PAS-HIN-12-010

