Measurement of high-p_T azimuthal anisotropy in charged hadron production from 2.76 TeV PbPb collisions at CMS

Victoria Zhukova
(MIT)
for the CMS Collaboration

Quark Matter Conference, Washington DC
14th Aug, 2012
Jet Quenching and Azimuthal Anisotropy

Path length (L) dependence of jet energy loss (ΔE)

$$\Delta E \sim L^\alpha$$

Fourier decomposition of charged hadron yields:

$$\frac{d^3 N}{p_T dp_T d\eta d\phi} = \frac{1}{2\pi} \frac{d^2 N}{p_T dp_T d\eta} \left(1 + \sum_{k=1}^{\infty} 2v_{n=km}(p_T, \eta) \cos[n(\phi - \Psi_m)] \right)$$

Azimuthal anisotropy (v_2, v_3, v_4) of high p_T jets
Physics Motivation

ΔE~L^α

α = 1 for pQCD, collisional
α = 2 for pQCD, radiative
α = 3 for AdS/CFT

Initial Conditions:
- Glauber
- Color Glass Condensate

CMS Detector

Unprecedented kinematic range and acceptance
High p_T Single Track Trigger

- Full 2011 HI Data set: $L_{\text{int}} = 150 \, \mu\text{b}^{-1}$
- Single-Track High-p_T Triggers

(Total # of events: $\sim 1.55M$ with $p_T > 20$ GeV/c)

All triggers are at least 95% efficient (0-40%)
Event Plane Formalism

Event Plane
Experimentally observable, used to estimate the true participant plane.

\[\Psi_n' = \frac{1}{n} \tan^{-1} \left(\frac{\sum w_i \sin(n\varphi_i)}{\sum w_i \cos(n\varphi_i)} \right) \]

v² Coefficient

\[v^2_{ob} \{EP\} = \langle \cos 2(\varphi - \Psi_2) \rangle = \frac{1}{N_{ev}} \sum_j \left[\frac{1}{M_j} \sum_i \cos 2(\varphi_i^j - \Psi_2^j) \right] \]

\[v_n \{EP\} = \frac{v^2_{ob} \{EP\}}{R} \]

Resolution Correction: (3-subevent method)

Need to correct for \(\Psi_{EP} \) resolution (R).
To calculate v_2:
$v_2^+ \text{ with } EP^- \text{ and } v_2^- \text{ with } EP^+$

Particles from the positive η region are correlated with the event plane calculated in the negative η region.

Event Planes:
EP+ ($3<\eta<5$)
EP- ($-5<\eta<-3$)

Hadronic Forward Calorimeters used for determining the Event Plane.

This minimizes systematic effects that result from back-to-back di-jets
Based on this study we conclude that the gap size of 3 is sufficient to suppress most of the back-to-back di-jet effects.
Based on this study we conclude that the gap size of 3 is sufficient to suppress most of the back-to-back di-jet effects.
v_2 as a function of $p_T \ (|\eta|<1)$

- First v_2 measurements for $p_T > 20\text{GeV}/c$
- Gradual decrease of v_2 above $p_T \sim 10 \text{ GeV}/c$

PRL 109, 022301(2012)
v_2 as a function of p_T ($1 < |\eta| < 2$)
Theory Comparison

Theory: B.Betz, M.Gyulassy; arXiv:1201.0281

-Data can constrain different theoretical scenarios
Higher Harmonics Results (v_3)

NEW RESULTS!!!
-Small v_3 signal above 20 GeV/c.

GLAUBER
Higher Harmonics Results (v_4)

NEW RESULTS!!!

GLAUBER
v_2 as a function of centrality

- Significant non-zero v_2 up to $p_T \sim 48$ GeV/c for all the centralities.
- For $p_T > 48$ GeV/c v_2 is consistent with 0 for all the centralities.

$\varepsilon_{\text{part}}$: 0.09 (0-10%) to 0.46 (50-60%)
Summary

- The v_2 azimuthal anisotropy coefficient is determined over a wide coverage in p_T: $1 < p_T < 60$ GeV/c as a function of collision centrality based on the 2011 data sample.

- The v_3 and v_4 coefficients are obtained up to $p_T \sim 40$ GeV/c.

- Above $p_T \sim 10$ GeV/c v_2 values show a gradual decrease with p_T, being consistent with zero only above $p_T \sim 48$ GeV/c for all the centralities. The v_3 and v_4 asymmetries are small above 20 GeV/c.

- Centrality dependence of v_2 is observed for both very low and high-p_T particles. It is consistent with path-length-dependent energy loss observed at high-p_T up to $p_T \sim 35$ GeV/c.
BACKUP
Di-hadron Correlations Formalism

Signal pair distribution:
\[S(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{same}}}{d\Delta \eta d\Delta \phi} \]

Background pair distribution:
\[B(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{mix}}}{d\Delta \eta d\Delta \phi} \]

Associated hadron yield per trigger:
\[\frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{pair}}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \]

\[\Delta \eta = \eta^{\text{assoc}} - \eta^{\text{trig}} \]
\[\Delta \phi = \phi^{\text{assoc}} - \phi^{\text{trig}} \]

(d) CMS N ≥ 110, 1 GeV/c < p_{T} < 3 GeV/c

back-to-back di-jet correlations

long-range near-side structure

jet peak
Azimuthal Correlations at High p_T

- Clear and significant long-range near-side structure is observed for the first time for $p_T^{\text{trig}} > 20$ GeV/c.