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Jets at RHIC vs LHC

Edward Wenger - Slide

Jet Reconstruction at RHIC

5

Intro to Heavy Ions Analysis Methods Calorimeter jet imbalance Energy balance in charged tracks

Strong jet quenching evident at RHIC, but direct jet reconstruction is 
challenging due to fluctuations in soft background

At LHC energies the jets have much less soft 
background and are cleaner probes
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• PQCD

• Thermal Field Theory

• Lattice QCD

• Hydrodynamics

• AdS/CFT correspondence

Theoretical Approaches

We will construct effective theory for 
perturbative calculation of jet energy loss
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Mo2va2on
•  Improved	  jet	  quenching	  
phenomenology	  

•  Effec2ve	  theory	  valid	  for	  
calcula2ons	  of	  radia2ve	  
and	  collisional	  energy	  
losses	  

•  Factoriza2on	  of	  medium-‐
induced	  spliTngs	  

•  Gauge	  invariance	  
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Figure 3: RAA in central (0–5%) and peripheral (70–80%) Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Error bars

indicate the statistical uncertainties. The boxes contain the systematic errors in the data and the pT dependent

systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,

the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the pp̄ measurement

at
√
s
NN

= 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9

TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on 〈Ncoll〉.
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Figure 4: Comparison of RAA in central Pb–Pb collisions at LHC to measurements at
√
s
NN

= 200 GeV by the

PHENIX [30] and STAR [31] experiments at RHIC. The error representation of the ALICE data is as in Fig. 3.

The statistical and systematic errors of the PHENIX data are shown as error bars and boxes, respectively. The

statistical and systematic errors of the STAR data are combined and shown as boxes. The vertical bars around

RAA = 1 indicate the pT independent scaling errors on RAA.

3

High energy heavy-ion collisions enable the study of strongly interacting matter under extreme condi-

tions. At sufficiently high collision energies Quantum-Chromodynamics (QCD) predicts that hot and

dense deconfined matter, commonly referred to as the Quark-Gluon Plasma (QGP), is formed. With the

advent of a new generation of experiments at the CERN Large Hadron Collider (LHC) [1] a new energy

domain is accessible to study the properties of this state.

Previous experiments at the Relativistic Heavy Ion Collider (RHIC) reported that hadron production

at high transverse momentum (pT ) in central (head-on) Au–Au collisions at a centre-of-mass energy

per nucleon pair
√
s
NN
of 200 GeV is suppressed by a factor 4–5 compared to expectations from an

independent superposition of nucleon-nucleon (NN) collisions [2, 3, 4, 5]. The dominant production

mechanism for high-pT hadrons is the fragmentation of high-pT partons that originate in hard scatterings

in the early stage of the nuclear collision. The observed suppression at RHIC is generally attributed to

energy loss of the partons as they propagate through the hot and dense QCD medium [6, 7, 8, 9, 10].

To quantify nuclear medium effects at high pT , the so called nuclear modification factor RAA is used.

RAA is defined as the ratio of the charged particle yield in Pb–Pb to that in pp, scaled by the number of

binary nucleon–nucleon collisions 〈Ncoll〉

RAA(pT ) =
(1/NAA

evt )d
2NAA

ch /d!dpT
〈Ncoll〉(1/Npp

evt )d2N
pp

ch /d!dpT
,

where ! = − ln(tan"/2) is the pseudo-rapidity and " is the polar angle between the charged particle
direction and the beam axis. The number of binary nucleon–nucleon collisions 〈Ncoll〉 is given by the
product of the nuclear overlap function 〈TAA〉 [11] and the inelastic NN cross section #NN

inel . If no nuclear

modification is present, RAA is unity at high pT .

At the larger LHC energy the density of the medium is expected to be higher than at RHIC, leading to a

larger energy loss of high pT partons. On the other hand, the less steeply falling spectrum at the higher

energy will lead to a smaller suppression in the pT spectrum of charged particles, for a given magnitude

of partonic energy loss [9, 10]. Both the value of RAA in central collisions as well as its pT dependence

may also in part be influenced by gluon shadowing and saturation effects, which in general decrease with

increasing x and Q2.

This Letter reports the measurement of the inclusive primary charged particle transverse momentum

distributions at mid-rapidity in central and peripheral Pb–Pb collisions at
√
s
NN

= 2.76 TeV by the ALICE
experiment [12]. Primary particles are defined as prompt particles produced in the collision, including

decay products, except those from weak decays of strange particles. The data were collected in the first

heavy-ion collision period at the LHC. A detailed description of the experiment can be found in [12].

For the present analysis, charged particle tracking utilizes the Inner Tracking System (ITS) and the Time

Projection Chamber (TPC) [13], both of which cover the central region in the pseudo-rapidity range

|! | < 0.9. The ITS and TPC detectors are located in the ALICE central barrel and operate in the 0.5 T
magnetic field of a large solenoidal magnet. The TPC is a cylindrical drift detector with two readout

planes on the endcaps. The active volume covers 85< r < 247 cm and −250< z< 250 cm in the radial
and longitudinal directions, respectively. A high voltage membrane at z = 0 divides the active volume

into two halves and provides the electric drift field of 400 V/cm, resulting in a maximum drift time of

94 µs.

The ITS is used for charged particle tracking and trigger purposes. It is composed of six cylindrical layers

of high resolution silicon tracking detectors with radial distances to the beam line from 3.9 to 43 cm. The

two innermost layers are the Silicon Pixel Detectors (SPD) with a total of 9.8 million pixels, read out by

1200 chips. Each chip provides a fast signal if at least one of its pixels is hit. The signals from the 1200

chips are combined in a programmable logic unit which supplies a trigger signal. The SPD contributes

to the minimum-bias trigger, if hits are detected on at least two chips on the outer layer. The SPD is

New LHC heavy ion data!

ALICE collaboration, 11-12/2010

the number of binary nucleon-nucleon collisions
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systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,

the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the pp̄ measurement

at
√
s
NN

= 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9

TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on 〈Ncoll〉.
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An	  effec2ve	  theory	  for	  jets	  in	  the	  medium	  



QCD	  à	  SCET	  

•  SoZ	  Collinear	  Effec2ve	  Theory	  (SCET)	  is	  an	  effec2ve	  theory	  of	  QCD	  
that	  describes	  the	  dynamics	  of	  highly	  energe2c	  quarks	  and	  gluons	  

•  Ideally	  suited	  for	  highly	  energe2c	  jets	  
•  In	  QCD	  one	  uses	  the	  full	  theory	  Lagrangian	  and	  performs	  high	  energy	  

expansion	  diagram	  by	  diagram	  
•  SCET	  Lagrangian	  captures	  the	  leading	  power	  of	  QCD	  and	  so,	  no	  

further	  expansion	  needed	  
•  In	  addi2on	  one	  gets	  all	  the	  benefits	  of	  effec2ve	  field	  theory:	  higher	  

symmetries,	  straigh_orward	  way	  to	  incorporate	  power	  correc2ons,	  
power	  to	  resum	  large	  logarithms	  

•  1000+	  papers	  exist	  on	  using	  SCET	  for	  hadron	  and	  lepton	  collisions	  
•  ~5	  papers	  on	  using	  SCET	  in	  the	  medium	  

ps ⇠ (�2,�2,�2) pc ⇠ (1,�2,�)

SoZ	  Collinear	  Effec2ve	  Theory	  
 , A ⇠n, Ac, As Bauer,	  Fleming,	  Luke,	  Pijrol,	  Stewart,	  00	  



Gyulassy-‐Wang	  model	  
•  A	  simple	  model	  of	  medium	  has	  

a	  finite	  number	  of	  scaNering	  
centers	  with	  a	  sta2c	  Debye-‐
screened	  poten2al	  

•  It	  helps	  us	  understand	  that	  SCET	  
needs	  to	  be	  expanded	  in	  order	  
to	  correctly	  describe	  jet	  
proper2es	  in	  the	  medium	  

• The medium is modeled with a finite number of 
scattering centers with static Debye-screened 
potential

H =
NX

n=1

H(q;x
n

) = 2⇡�(q0) v(q)
NX

n=1

eiqxn T a(R)⌦ T a(n)

v(q) =
4⇡↵s

q2z + q2 + µ2

Gyulassy, Wang, 94

• The momentum scaling of the 
exchange gluon is that of the 
Glauber gluon:  q(�2,�2,�)

Gyulassy-Wang model

⌦ ⌦ ⌦

⌦

⌦

⌦
⌦

⌦
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• The goal is to construct an effective theory for highly energetic quarks and 
gluons in the medium

• Lagrangian that describes elastic scattering of quarks and gluons from the 
medium scattering centers

• SCET is a good start

• Need to add the Glauber gluons to the SCET Lagrangian: SCETG

What we want from effective theory

q / (�2,�2,�)

Glauber gluons have to be integrated out of the theory: effective potential.

Tuesday, March 8, 2011



Idilbi, Majumder(08)

D’Eramo, Liu, Rajagopal(10)
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The initial state of the incoming nucleus is defined as |A; p〉. The general final hadronic or partonic state is defined
as |X〉. As a result, the semi-inclusive hadronic tensor may be defined as

Wµν=
∑

X

(2π4)δ4(q+PA−pX)〈A; p|Jµ(0)|X〉〈X |Jν(0)|A; p〉 = 2Im

[
∫

d4yeiq·y〈A; p|Jµ(y)Jν(0)|A; p〉
]

, (32)

where the sum (
∑

X) runs over all possible hadronic states and Jµ is the hadronic electromagnetic current i.e.,
Jµ = Qq ξ̄n̄γµξn, where Qq is the charge of a quark of flavor q in units of the positron charge e. It is understood
that the factors of the electromagnetic coupling constant have already been extracted and included in Eq. (30). The
leptonic tensor will not be discussed further. The focus in the remaining shall lie exclusively on the hadronic tensor.

In a full QCD calculation of Eq. (32), one computes the hadronic tensor, order by order, in the strong coupling.
This leads to the introduction of a variety of processes leading to a modification of the structure of the jet. Such
processes include radiative branchings, flavor changes of propagating partons, as well as transverse diffusion of the
partons in the shower which ensues from the quark produced in the hard scattering. In this article, we will focus
solely on the processes which lead to the transverse momentum diffusion or transverse broadening of the produced
hard quark.

In Ref. [30], the leading contributions to transverse broadening without induced radiation, at all orders in coupling,
were identified as those of Fig. 5. These diagrams depict processes where the propagating parton engenders multiple
scattering off the glue field inside the various nucleons through which it propagates. However, scatterings do not
change the small off-shellness of the propagating parton; as a result, large transverse momentum radiations do not
occur. Using simple kinematics, the relation between the momentum components of the glue field ki may be surmised
by insisting that the off-shellness of the i + 1th quark line be of the same order as the ith line,

(p + ki)
2 = p2 + k2

i + 2p+k−
i + 2p−k+

i − 2%p⊥ · %ki
⊥. (33)

Insisting that (p+ki)2 ∼ p2 ∼ λ2Q2 and given the known scaling of the quark momenta (i.e., p+ ∼ λ2Q, p− ∼ Q, %p⊥ ∼
λQ), we obtain that %ki

⊥ ∼ λQ, k+
i ∼ λ2Q and k−

i may scale with a range of different choices Q, λQ, λ2Q etc. The first
two cases for the scaling of k− represent gluons which are emanated with large (−)-momentum from a nucleon moving
with large (+)-momentum. The number of such gluons must be vanishingly small. The first non-trivial population of
gluons emanating from a nucleon moving with a large (+)-momentum, are those which scale as k ∼ [λ2, λ2, λ], which
essentially constitute the Glauber sector.

q q

APAP y

p’
0

p
0

1 2 3 y3 2 y1

1q2q3q3q’2q’1q’

y’ y’ y’ y

FIG. 5: An order n diagram which contributes solely to transverse broadening.

Using the Feynman rules derived for Glauber gluons in section 2, the leading component of nth order diagrams such

• n-collinear jet

• n-collinear source of Glauber gluons

• covariant, light-cone gauge
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identify

|Mβα|2 =
1

L2 Nc

∫

d2x⊥ e−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

. (5.37)

We now have all the ingredients in place to use (3.8) to
obtain the probability distribution P (k⊥). We find

P (k⊥) =

∫

d2x⊥ e−ik⊥·x⊥ WF (x⊥) (5.38)

where we have defined

WF [x⊥] ≡
1

Nc

〈

Tr
[

W †
F [0, x⊥]WF [0, 0]

]〉

. (5.39)

To demonstrate that (5.38) is correct it suffices to check
first that P (k⊥)/L2 and (5.37) are identical when k⊥ $= 0,
which is the case since their difference is proportional to
δ2(k⊥), and second that (5.38) is correctly normalized as
in (1.1), which is the case since

∫

d2k⊥
(2π)2

∫

d2x⊥ e−ik⊥·x⊥ WF (x⊥) = WF (0) = 1.

(5.40)
It is also straightforward to check that

2 ImMαα = 2− 1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

(5.41)

and

P (0)

L2
= |Sαα|2

= |Mαα|2 +
1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

− 1

= 1− 2 ImMαα + |Mαα|2 , (5.42)

as in (3.8). The expression (5.38) with (5.39) is our cen-
tral technical result.
The analysis of this section can be applied completely

analogously to the case in which the hard parton is a
collinear gluon, instead of a collinear quark. The only
changes are that A+ is now in the adjoint representation
and the 1/Nc factor in (5.39) becomes 1

N2
c−1 . We con-

clude that whether the hard parton is a collinear quark
or gluon, the probability distribution takes the form

P (k⊥) =

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) (5.43)

with

WR(x⊥) =
1

d (R)

〈

Tr
[

W †
R[0, x⊥]WR[0, 0]

]〉

(5.44)

where R is the SU(N) representation to which the
collinear particle belongs and d (R) is the dimension of
this representation. Eq. (5.43) is an elegant expression

ti tf

tf − iεti − iε

ti − iβ

FIG. 5: Schwinger-Keldysh contour that must be used in the
evaluation of WR(x⊥).

saying that the probability for the quark to obtain trans-
verse momentum k⊥ is simply given by the Fourier trans-
form in x⊥ of the expectation value (5.44) of two light-
like Wilson lines separated in the transverse plane by the
vector x⊥. Eq. (5.43) has been obtained previously by
Casalderrey-Solana and Salgado and by Liang, Wang and
Zhou using different methods [17, 24].

VI. q̂ FROM LIGHT-LIKE WILSON LINES

The jet quenching parameter q̂ is the mean transverse
momentum picked up by the hard parton per unit dis-
tance travelled, or equivalently per unit time. We repro-
duce its definition (1.2) here:

q̂ ≡ 1

L

∫

d2k⊥
(2π)2

k2⊥ P (k⊥) . (6.1)

Substituting our result (5.43) for P (k⊥) in (6.1), we find
that

q̂ =

√
2

L−

∫

d2k⊥
(2π)2

k2⊥

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) , (6.2)

where we have replaced L by the distance along the light-
cone L− =

√
2L. Upon evaluating q̂ in Section VII, we

shall see that it is L−-independent.
It is important to notice that the expectation value

of the trace of the product of two light-like Wilson lines
that arises in P (k⊥) and hence in q̂, namely WR(x⊥) of
(5.44), has a different operator ordering from that in a
standard Wilson loop. Each of the A+’s in (5.27) can be
written as the product of an operator and a group matrix:
A+ = (A+)ata. It is clear from the explicit expression
(5.27) that in WR(x⊥) both the operators and the group
matrices are path ordered. In contrast, in a conventional
Wilson loop the group matrices are path ordered but the
operators are time ordered. Because the operators in
(5.44) are path ordered, the expectation value in (5.44)
should be described using the Schwinger-Keldysh contour
in Fig. 5 with one of the light-like Wilson lines on the
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identify

|Mβα|2 =
1

L2 Nc

∫

d2x⊥ e−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

. (5.37)

We now have all the ingredients in place to use (3.8) to
obtain the probability distribution P (k⊥). We find

P (k⊥) =

∫

d2x⊥ e−ik⊥·x⊥ WF (x⊥) (5.38)

where we have defined

WF [x⊥] ≡
1

Nc

〈

Tr
[

W †
F [0, x⊥]WF [0, 0]

]〉

. (5.39)

To demonstrate that (5.38) is correct it suffices to check
first that P (k⊥)/L2 and (5.37) are identical when k⊥ $= 0,
which is the case since their difference is proportional to
δ2(k⊥), and second that (5.38) is correctly normalized as
in (1.1), which is the case since

∫

d2k⊥
(2π)2

∫

d2x⊥ e−ik⊥·x⊥ WF (x⊥) = WF (0) = 1.

(5.40)
It is also straightforward to check that

2 ImMαα = 2− 1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

(5.41)

and

P (0)

L2
= |Sαα|2

= |Mαα|2 +
1

Nc

〈

TrW †
F [0, 0] + TrWF [0, 0]

〉

− 1

= 1− 2 ImMαα + |Mαα|2 , (5.42)

as in (3.8). The expression (5.38) with (5.39) is our cen-
tral technical result.
The analysis of this section can be applied completely

analogously to the case in which the hard parton is a
collinear gluon, instead of a collinear quark. The only
changes are that A+ is now in the adjoint representation
and the 1/Nc factor in (5.39) becomes 1

N2
c−1 . We con-

clude that whether the hard parton is a collinear quark
or gluon, the probability distribution takes the form

P (k⊥) =

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) (5.43)

with

WR(x⊥) =
1

d (R)

〈

Tr
[

W †
R[0, x⊥]WR[0, 0]

]〉

(5.44)

where R is the SU(N) representation to which the
collinear particle belongs and d (R) is the dimension of
this representation. Eq. (5.43) is an elegant expression

ti tf

tf − iεti − iε

ti − iβ

FIG. 5: Schwinger-Keldysh contour that must be used in the
evaluation of WR(x⊥).

saying that the probability for the quark to obtain trans-
verse momentum k⊥ is simply given by the Fourier trans-
form in x⊥ of the expectation value (5.44) of two light-
like Wilson lines separated in the transverse plane by the
vector x⊥. Eq. (5.43) has been obtained previously by
Casalderrey-Solana and Salgado and by Liang, Wang and
Zhou using different methods [17, 24].

VI. q̂ FROM LIGHT-LIKE WILSON LINES

The jet quenching parameter q̂ is the mean transverse
momentum picked up by the hard parton per unit dis-
tance travelled, or equivalently per unit time. We repro-
duce its definition (1.2) here:

q̂ ≡ 1

L

∫

d2k⊥
(2π)2

k2⊥ P (k⊥) . (6.1)

Substituting our result (5.43) for P (k⊥) in (6.1), we find
that

q̂ =

√
2

L−

∫

d2k⊥
(2π)2

k2⊥

∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) , (6.2)

where we have replaced L by the distance along the light-
cone L− =

√
2L. Upon evaluating q̂ in Section VII, we

shall see that it is L−-independent.
It is important to notice that the expectation value

of the trace of the product of two light-like Wilson lines
that arises in P (k⊥) and hence in q̂, namely WR(x⊥) of
(5.44), has a different operator ordering from that in a
standard Wilson loop. Each of the A+’s in (5.27) can be
written as the product of an operator and a group matrix:
A+ = (A+)ata. It is clear from the explicit expression
(5.27) that in WR(x⊥) both the operators and the group
matrices are path ordered. In contrast, in a conventional
Wilson loop the group matrices are path ordered but the
operators are time ordered. Because the operators in
(5.44) are path ordered, the expectation value in (5.44)
should be described using the Schwinger-Keldysh contour
in Fig. 5 with one of the light-like Wilson lines on the

10

× θ(y−n − y−n−1) · · · θ(y
−
2 − y−1 ) igA

+(y+, y−n , y⊥) · · · igA+(y+, y−1 , y⊥)
]

. (5.27)

Now, summing over all m and n, we obtain

∞
∑

m=1,n=1

d2Anm

d2k⊥
=

√
2

L3 Nc

∫

dy+dy⊥dy
′
⊥ e−ik⊥·(y⊥−y′

⊥
)
〈

Tr
[(

W †
F [y

+, y′⊥]− 1
)

(

WF [y
+, y⊥]− 1

)

]〉

(5.28)

where we have introduced the fundamental Wilson line
along the lightcone

WF

[

y+, y⊥
]

≡ P

{

exp

[

ig

∫ L−

0
dy− A+(y+, y−, y⊥)

]}

(5.29)
with P denoting path-ordering, and where we have now
restored the expectation value in the medium. Recall
that to this point we have been calculating how the hard
parton propagates through one background gauge field
configuration. Now that in (5.28) we have pushed this
calculation through to the point that the gauge field ap-
pears only in the Wilson lines along the lightcone, we can
complete the story by averaging over gauge field configu-
rations. If the medium is quark-gluon plasma in equilib-
rium, then the average represented by 〈. . .〉 is a thermal
average. In our derivation of (5.28) it makes no differ-
ence whether the medium is strongly coupled or weakly
coupled; this distinction, or indeed any properties of the
medium, only become relevant when one seeks to evalu-
ate the thermal average.

We have made a leap in going from (5.27), in which
the gluon fields A+ describe Glauber gluons, to (5.28),
in which we are taking a thermal average over all gluon
fields. By gauge invariance, we know that (5.28) must be
the correct generalization of (5.27) in the present context.
But, in future when the effects of soft gluons and radi-
ation (processes 1 and 3 from Section II) are computed,
it is possible that additional separately gauge invariant
contributions to transverse momentum broadening may
arise. As an aside, note that the expression (5.28) is valid
in any covariant gauge but not, for example, in a light-
cone gauge in which A+ = 0 and the lightlike Wilson
lines in (5.28) are given by the identity. Upon redoing
the calculation in such a gauge, (5.28) would contain the
expectation value of a transverse Wilson line joining the
ends of the two lightlike Wilson lines.

Because the medium is translation-invariant, the ex-
pectation value of the trace of the product of Wilson
lines that arises in (5.28) must be independent of y+ and
can only depend on the difference y⊥−y′⊥. Upon making
the change of variables

X⊥ =
1

2
(y′⊥ + y⊥), x⊥ = y⊥ − y′⊥, (5.30)

we find

∞
∑

m=1,n=1

d2Anm

d2k⊥
= a

∫

d2x⊥ e−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

(5.31)

with

a =

√
2

L3Nc

∫

dy+d2X⊥ =

√
2

LNc

∫

dy+ . (5.32)

We now have to find a way to regularize the integral
over y+. We assume that we throw particles toward the
medium for a time interval ∆t, which is arbitrary and
much larger than the box size L. We have normalized
our states such that they describe one particle per volume
L3. And, the particles they describe move at the speed
of light. Therefore, the incident flux is 1/L3. The total
number of particles which propagate through the medium
in the time interval ∆t is then given by

1

L3
L2 ∆t =

∆t

L
, (5.33)

which means that in order to obtain the probability dis-
tribution for a single particle to acquire transverse mo-
mentum k⊥ we must divide (5.31) by ∆t/L. The integral
over y+ is the projection of the time interval along the
y+-axis, namely ∆t/

√
2, and we have

a → L

∆t
a =

√
2

∆tNc

∫

dy+ =
1

Nc
. (5.34)

We therefore finally obtain

∞
∑

m=1,n=1

d2Anm

d2k⊥
=

1

Nc

∫

d2x⊥ e−ik⊥·x⊥

×
〈

Tr
[(

W †
F [0, x⊥]− 1

)

(WF [0, 0]− 1)
]〉

. (5.35)

Recall from (3.9) that the forward scattering amplitude
which appears in the unitarity relation (3.6) is given by

2 ImMαα =

∫

d2k⊥
(2π)2

∞
∑

m=1,n=1

d2Anm

d2k⊥
. (5.36)

As anticipated in Section III, we can now use the uni-
tarity relation (3.6) as well as (3.7), (5.35) and (5.36) to

• Probability density of the 
scattered jet is equal to exp.value 
of two Wilson Lines

• Derived in the covariant gauge
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Lagrangian of SCETG

section 5 we evaluate the transverse momentum broadening of jets, induced by their collisional interactions

in the strongly interacting medium. Radiative processes are discussed in section 6. Our focus here is on the

soft gluon limit ⇤ ⇥ E for comparison to previous results. We demonstrate the gauge invariance of the jet

broadening and energy loss results in section 7. We deduce the kernels that describes the broadening and

medium-induced bremsstrahlung as a function of the quark interactions in the medium in section 8. An

application of the reaction operators for collisional and radiative processes is also discussed in this section.

The extension of radiative energy loss calculation beyond this soft gluon approximation is presented in

section 9. We also show how the process-dependent medium-induced radiative corrections factorize from

the hard jet production cross section. Our conclusions are given in section 10. We have moved some of the

background technical discussion to appendices.

2. A brief overview of SCET

SCET [8, 9, 10, 11] is an e⇥ective theory of QCD which describes the dynamics of highly energetic quarks

and gluons. The relevant physical scales in this e⇥ective theory are the hard scale Eh � ET � Ecm, jet scale

Ej � p⇤ that describes the width of the jet in momentum space and the scale of soft radiation Es � �QCD.

The degrees of freedom in SCET are collinear quarks (�n,p), collinear gluons (An,p) and soft gluons (As).

All other fields, such as the soft quarks, are integrated out from the QCD Lagrangian. Their e⇥ect on

the dynamics is contained into Wilson coe⇤cients of the SCET operators, which can be calculated using

a standard matching of full theory onto e⇥ective theory.

The Lagrangian of SCET [9] arises from substituting into the QCD Lagrangian ⇥ =
⌥

p̃ e�ip̃x ⇥n,p̃ and

integrating out the small component �n̄ of ⇥n, where �n = n/n̄/
4 ⇥n, �n̄ = n̄/n/

4 ⇥n and ⇥n = �n + �n̄. The result

for the collinear-soft Lagrangian is:

LSCET(�n, An, As) = �̄n

⇧
in·D + iD/⇤

1

in̄·D iD/⇤
⌃
n̄/

2
�n + LYM(An, As) , (2.1)

LYM(An, As) =
1

2g2
tr
⇤�
iDµ

s + gAµ
n,q, iD

�
s + gA�

n,q�
⇥⌅2

+ LG.F. , (2.2)

LG.F.(R⇥) =
1

�
tr
⇤�
iDsµ, A

µ
n,q

⇥⌅2
, (2.3)

LG.F.(LCG(b)) =
1

�
tr
⇤
bµA

µ
n,q

⌅2
. (2.4)

Here, the covariant derivative D contains both collinear and soft fields: iD = i⌅ + g (An +As), while Ds

includes only the soft gluons: iDs = i⌅ + gAs. Thus the collinear and soft modes are coupled in the

SCET Lagrangian. In the first term of Eq. (2.2) the summation over label momenta q, q⇥ is understood

implicitly, and in Eq. (2.3), Eq. (2.4) summation over the label momentum q is understood implicitly. We

have written out explicitly the gauge fixing terms for the covariant and the light-cone gauges. The ghost

terms are omitted for brevity.

A key ingredient of SCET formulation is the BPS transformation [11]. This transformation constitutes

a collinear field redefinition which involves soft Wilson lines and removes the interactions between soft and

collinear fields in the Lagrangian of SCET up to the power corrections. Such decoupling is essential in the

proof of factorization theorems in SCET. The BPS transformation redefines the collinear quark and gluon

– 3 –

All we need in order to derive all interactions between collinear(and soft) 
particles with Glaubers is the scaling rule for the vector potential   

The SCET Lagrangian contains everything  :)

iDµ = i@µ + g(Aµ
s +Aµ

c+Aµ
G)

Anti-collinear source of Glaubers
Aµ

G / (�4,�2,�3)

Aµ
G / (�2, 0,�)

covariant gauge

light-cone gauge
Idilbi, Majumder, 08
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• Our Glauber Lagrangian is invariant under the gauge symmetries 
of SCET

• We will use the static source and three gauge choices: 

• covariant(AG, Ac)

• light-cone(AG, Ac) and 

• hybrid(Ac+=0, covariant(AG))

of Table 4.1, where we have defined �1...�4,⇤1...⇤3 as follows:

�µ
1 = igT a nµ n̄/

2
, (4.6)

�µ
2 = igT a �

µ
⇤p/⇤ + p/⇥⇤�

µ
⇤

n̄·p
n̄/

2
, (4.7)

�µ
3 = igT a vµ, (4.8)

�µ
4 = igT a �µ, (4.9)

⇤µ,⇥,�
1 = gfabc nµ

 
g⇥� n̄·q1 + n̄⇥

⇤
q�2⇤ � q�1⇤

⌅
� n̄� (q⇥2⇤ � q⇥1⇤)�

1� 1
⇤

2

⇤
n̄�q⇥1 + n̄⇥q�2

⌅⌦
, (4.10)

⇤µ,⇥,�
2 = gfabc

⌥
gµ�⇤

⇧
�n⇥

2
q+1 + q⇥1⇤ � 2q⇥2⇤

⌃
+ gµ⇥⇤

⇧
�n�

2
q+1 + q�2⇤ � 2q�1⇤

⌃
+ g⇥�⇤

�
nµ n̄·q1 + qµ1⇤ + qµ2⇤

⇥�
,

⇤µ,⇥,�
3 = gfabc

⌥
gµ�⇤

⇧
n̄⇥

2
(q�1 � 2q�2 ) + q⇥1⇤ � 2q⇥2⇤

⌃
+ gµ⇥⇤

⇧
n̄�

2
(q�2 � 2q�1 ) + q�2⇤ � 2q�1⇤

⌃
+ g⇥�⇤

�
qµ1⇤ + qµ2⇤

⇥�
.

(4.11)

The derived rules allow us to write down the e⌅ective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (⇤n, An, AG) = LSCET(⇤n, An) + LG (⇤n, An, AG) , (4.12)

LG (⇤n, An, AG) =
↵

p,p⇥

e�i(p�p⇥)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
AGµ,a(x) , . (4.13)

Depending on the gauge and the source, the vertexes and the vector potential are di⌅erent and are provided

in the table above. The Lagrangian of this form for the collinear source in R⇤ and A� = 06 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for �qqAG in Table 4.1. We

slso note that for the covariant gauge and ⇤ = 1 our Feynman rule for �ggAG(R⇤) = ⇤µ⇥�
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.13) including

the source fields (see Eq. (4.1)):

LG (⇤n, An, ⇥) =
↵

p,p⇥,q

e�i(p�p⇥+q)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
⇥̄ �⇥,a

s ⇥⇥µ⇥(q),

(4.14)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (⇤n, An, ⇥) ⇤ LG

⇤
W †

n⇤n,Bn(An), ⇥
⌅
⇥ LG (⌅n,Bn, ⇥) , (4.15)

6In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n � n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A� = 0 gauge.
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of Table 4.1, where we have defined �1...�4,⇤1...⇤3 as follows:

�µ
1 = igT a nµ n̄/

2
, (4.6)

�µ
2 = igT a �

µ
⇤p/⇤ + p/⇥⇤�

µ
⇤

n̄·p
n̄/

2
, (4.7)

�µ
3 = igT a vµ, (4.8)

�µ
4 = igT a �µ, (4.9)

⇤µ,⇥,�
1 = gfabc nµ

⌥
g⇥� n̄·q1 + n̄⇥

⇤
q�2⇤ � q�1⇤

⌅
� n̄� (q⇥2⇤ � q⇥1⇤)�

1� 1
⇤

2

⇤
n̄�q⇥1 + n̄⇥q�2

⌅�
, (4.10)

⇤µ,⇥,�
2 = gfabc

⌦
gµ�⇤ (q⇥1⇤ � 2q⇥2⇤) + gµ⇥⇤ (q�2⇤ � 2q�1⇤) + g⇥�⇤

�
nµ n̄·q1 + qµ1⇤ + qµ2⇤

⇥↵
, (4.11)

⇤µ,⇥,�
3 = gfabc

⌦
gµ�⇤ (q⇥1⇤ � 2q⇥2⇤) + gµ⇥⇤ (q�2⇤ � 2q�1⇤) + g⇥�⇤

�
qµ1⇤ + qµ2⇤

⇥↵
. (4.12)

The derived rules allow us to write down the e⌅ective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (⇤n, An, AG) = LSCET(⇤n, An) + LG (⇤n, An, AG) , (4.13)

LG (⇤n, An, AG) =
 

p,p⇥

e�i(p�p⇥)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
AGµ,a(x) , . (4.14)

Depending on the gauge and the source, the vertexes and the vector potential are di⌅erent and are provided

in the table above. The Lagrangian of this form for the collinear source in R⇤ and A� = 07 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for �qqAG in Table 4.1. We

slso note that for the covariant gauge and ⇤ = 1 our Feynman rule for �ggAG(R⇤) = ⇤µ⇥�
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.14) including

the source fields (see Eq. (4.1)):

LG (⇤n, An, ⇥) =
 

p,p⇥,q

e�i(p�p⇥+q)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
⇥̄ �⇥,a

s ⇥⇥µ⇥(q),

(4.15)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (⇤n, An, ⇥) ⇤ LG

⇤
W †

n⇤n,Bn(An), ⇥
⌅
⇥ LG (⌅n,Bn, ⇥) , (4.16)

where W †
n⇤n(⇥ ⌅n), Bn(An) are the dressed collinear gauge invariant quark and gluon fields correspond-

ingly. In the next two subsections we will show that Lagrangian in Eq. (4.16) is invariant under the BPS

transformation [11] and the soft and collinear gauge transformations.

7In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n � n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A� = 0 gauge.
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Feynman rules of SCETG

��
⌫
R⇥

q1

p p⇥

(b1)Ti

= i v(q1⇤) (b1)R (b1)Ti

n̄/
2

µ, a ⇥, bq1

p p⇥

(c1)Ti

= v(q1⇤) fabc1 (c1)Ti

⇧
gµ� n̄·p+ n̄µ q�1⇤ � n̄� qµ1⇤ �

1� 1
⇥

2 (n̄�pµ + n̄µp⇥�)

⌃

��
⌫
A+

q1

p p⇥

(b1)Ti

= i v(q1⇤) (a)R (b1)Ti

⇤
1 + p2�p�2

p+[q+1 ]

⌅
n̄/
2

µ, a ⇥, bq1

p p⇥

(c1)Ti

= v(q1⇤) fabc1 (c1)Ti

⇧
gµ�⇤ n̄·p

⇤
1 + p2�p�2

p+[q+1 ]

⌅
+

qµ1⇥p��+q�1⇥pµ

[q+1 ]

⌃

q1 q2

p p⇥

(b1)Ti (b2)Tj

= i v(q1⇤)v(q2⇤) (b1b2)R (b1)Ti(b2)Tj
2 q1⇥· q2⇥
p+[q+1 ][q

+
2 ]

n̄/
2

q1 q2

p p⇥

(c)Ti (d)Tj

= (�i)v(q1⇥)v(q2⇥)
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Figure 11: Feynman rules of SCETG involving Glauber gluons. The first two vertices are given in the covariant
gauge. Vertices from three through seven are for the light-cone gauge A+ = 0. Last two vertices are for the Hybrid
gauge. Note that the last three vertices in the light-cone gauge are power-suppressed in the covariant and Hybrid
gauges.
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Figure 13: The propagator of the T Wilson line emitted gluon.

Prescription 1
[q+] C(Pres)

⇥

+i⇥ 1
q++i⇥ 1

�i⇥ 1
q+�i⇥ 0

PV 1
2

�
1

q++i⇥ +
1

q+�i⇥

⇥
1
2

ML 1
q++i⇥sign(q�) �(q�)

Table 3: Dependence of C(Pres)
� on the light-cone prescription.

First, from the form of the propagator in figure 13 one can see that the Tn Wilson line cannot produce

physical gluons in the final state, since n̄·⇥ = 0 in the light-cone gauge. However, this propagator contracted

with the static source term vµ doesn’t vanish and is leading order in the e�ective theory power counting.

In order to derive the Feynman rules of Tn emission from the quark line we use the definition of the gauge

invariant quark field Eq. (E.1) and the explicit expression for the transverse gauge link in Eq. (E.2).

Finally we include the propagator in figure 13 to obtain first two Feynman rules in the figure 14 below.
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Figure 14: Feynman rules for the gluon emission from the transverse Wilson line Tn for single and double gluon
emission from a quark and a gluon line.
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Medium-‐induced	  spliTng	  kernels	  
3

FIG. 1: Feynman diagrams contributing to medium-induced
splittings at first order in opacity. Red lines corresponds to
Glauber gluons. The kinematics and topology are common to
all splitting processes: q → qg, g → gg, g → qq̄, q → gq.

and double Glauber gluon exchanges between the jets
and the constituents of the medium must be consid-
ered [40, 41, 50]. The calculation to first order in opacity,
which takes into account the contribution from the split-
ting induced by the interactions along the trajectory of
the parent parton and the dominant interference with
the splitting induced by the large Q2 process, is illus-

trated in figure 1. We do not specify the parent and
daughter parton flavors since the topology and kinemat-
ics are the same for the splitting processes enumerated
in Eqs. (10) - (13). Consequently, all results can be ex-
pressed in terms of universal transverse momentum vec-
tors A⊥,B⊥,C⊥,D⊥ and interference phases Ω1, ...,Ω5,
defined in [40]:

A⊥ = k⊥, B⊥ = k⊥ + xq⊥, C⊥ = k⊥ − (1− x)q⊥,

D⊥ = k⊥ − q⊥, (14)

Ω1 − Ω2 =
B2

⊥

p+0 x(1 − x)
, Ω1 − Ω3 =

C2
⊥

p+0 x(1 − x)
,

Ω2 − Ω3 =
C2

⊥ −B2
⊥

p+0 x(1 − x)
, Ω4 =

A2
⊥

p+0 x(1− x)
,

Ω5 =
A2

⊥ −D2
⊥

p+0 x(1 − x)
, (15)

where p+0 = p+ + k+ and the parent parton has no net
transverse momentum.

For completeness, we first present below the result for
the q → qg splitting, calculated in [40] and shown to be
gauge invariant:

(

dN

dxd2k⊥

)

q→qg

=
αs

2π2
CF

1 + (1− x)2

x

∫

d∆z

λg(z)

∫

d2q⊥

1

σel

dσ medium
el

d2q⊥

[

B⊥

B2
⊥

·
(

B⊥

B2
⊥

−
C⊥

C2
⊥

)

×
(

1− cos[(Ω1 − Ω2)∆z]
)

+
C⊥

C2
⊥

·
(

2
C⊥

C2
⊥

−
A⊥

A2
⊥

−
B⊥

B2
⊥

)

(

1− cos[(Ω1 − Ω3)∆z]
)

+
B⊥

B2
⊥

·
C⊥

C2
⊥

(

1− cos[(Ω2 − Ω3)∆z]
)

+
A⊥

A2
⊥

·
(

D⊥

D2
⊥

−
A⊥

A2
⊥

)

(

1− cos[Ω4∆z]
)

−
A⊥

A2
⊥

·
D⊥

D2
⊥

(

1− cos[Ω5∆z]
)

+
1

N2
c

B⊥

B2
⊥

·
(

A⊥

A2
⊥

−
B⊥

B2
⊥

)

(

1− cos[(Ω1 − Ω2)∆z]
)

]

, (16)

where λg(z) is the scattering length of a gluon in the
medium and (1/σel) dσ medium

el /d2q⊥ stands for normal-
ized elastic scattering cross section of a parton in the
medium. Even though this quantity varies when parton
is a quark or a gluon, in the high energy limit, when the
t− channel dominates the elastic scattering, this normal-
ized cross section does not change significantly.
Using the Feynman rules of SCETG in the hybrid

gauge and the Feynman diagrams exactly analogous to

the case of q → qg splitting considered in [40] and shown
in figure 1, we derive the remaining parton splittings in
the medium. The calculations are non-trivial and facili-
tated by intermediate results in [40]. As discussed in sec-
tion II, the medium-induced splitting for q → gq can be
obtained from Eq. (16) with the substitution x → 1− x.
Here, we skip the explicit expression for brevity. The re-
maining two splittings from a parent gluon are as follows:

Using	  effec2ve	  theory	  SCETG	  it	  is	  
a	  straigh_orward	  task	  to	  
calculate	  the	  medium-‐induced	  
spliTngs	  
	  
We	  pay	  special	  aNen2on	  to	  
proving	  the	  factoriza2on	  of	  the	  
spliTng	  from	  the	  produc2on	  
probability	  
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in opacity
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Figure 4: Diagrams in SCET describing splitting of a collinear quark into a collinear quark and a collinear gluon.

6. Medium-induced bremsstrahlung

In this section we use the Feynman rules of SCETG to derive the probability for an energetic quark to emit

a gluon, induced by the jet interactions in QCD matter. This is equivalent to evaluating the di⇥erential

distribution of the number of emitted gluons. We first present this calculation in the vacuum using SCET

and later in the medium using the new SCETG Lagrangian. In each case we consider the covariant gauge

and the initially static source. We also focus on final-state (FS) radiation. In the literature, such a

calculation is typically done in the soft (emitted) gluon approximation. However, in SCET and SCETG

dynamics, the leading interaction describes the collinear gluon emission, which will allow us to go easily

beyond the conventional ⇥ ⇥ E limit. We will perform this new calculation below in section 9, while in

this section we will focus on taking the soft gluon limit and comparing to the previously derived results

for radiative energy loss in QCD matter.

Abrem = ⌅J |T �̄n(x0) e
i
R
d4x(LQCD+LSCETG )|p,k⇧ . (6.1)

To study gluon emission, we start from the matrix element, Eq. (6.1), where J is the underlying hard

process that creates the quark jet, �̄n is the gauge invariant quark field, and p, k are the momenta of the

final state quark and of the emitted gluon, correspondingly. Since in this section we consider only the

case of the initial quark jet, we omit the quark index in the amplitudes below for brevity. The matrix

element in Eq. (6.1) gets contributions from 0, 1, 2, ... Glauber gluon exchanges between the collinear quark

and/or gluon and the sources in the medium. The first three correspond to vacuum emission, single Born

amplitude and two single Born exchanges amplitude, respectively, and are calculated in the subsections

below. To simplify the notation we write the n�Glauber insertion amplitude in the following form8:

A(n) = g �̄n,p

�
n⌅

l=1

⇧
d�l

⇥
R(q1, ..., qn)

(n)µ iJ

�
k + p�

n⇤

k=1

qk

⇥
ei(k+p)x0 ⇤µ(k) . (6.2)

6.1 Obtaining the Altarelli-Parisi splitting function in SCET

A large Q2 process is accompanied by bremsstrahlung even in the absence of in-medium interactions.

Knowledge of the corresponding amplitudes is also essential for the evaluation of the interference e⇥ects

between the di⇥erent sources or radiation for jet production in the QCD medium.

Calculation of the vacuum diagrams in figure 4 leads to the Altarelli-Parisi splitting function for the

q ⇤ qg process. This calculation has been performed in Ref. [52] in the light-cone gauge. We perform the

same calculation here in the covariant gauge. We also demonstrate how in the small x = k+/p+ limit the

relevant radiation piece can be identified at the amplitude level.

8In our notation Rµ stands for “Radiation”.
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Figure 5: Single Born diagrams contributing to the medium-induced gluon bremsstrahlung Eq. (6.2). The notation
for the scattering centers is the following: ⇤1 = [x1, q1, (b1)i].

we get the following expressions for the amplitudes in figure 5:

R(1)µ
1 = i(a)R

�
nµ +

�µ⇥(p/⇥ + k/⇥)

p+ + k+
+

p/⇥�
µ
⇥

p+

⇥
i(p+ + k+)

(p+ k)2 + i⇥
i (b1)R (b1)Ti i�g(p+ k, q1) , (6.14)

R(1)µ
2 = i(b1)R(b1)Tii�g(p, q1)i(a)R

�
nµ +

�µ⇥(p/⇥ + k/⇥ � q/1⇥)

p+
+

(p/⇥ � q/1⇥)�
µ
⇥

p+

⇥
i�g(p+ k, q1) , (6.15)

R(1)µ
3 = i(c1)R

�
n�1 +

��1⇥ (p/⇥ + k/⇥ � q/1⇥)

p+
+

p/⇥�
�1
⇥

p+

⇥

⇥ (�i)�g(k, q1)

n̄·k N
(R�)
�1�2 (k � q1) i�g(p+ k, q1) f

c1ab1(b1)Ti ⇥̃
�2µ
1 (k � q1, k). (6.16)

R(1)µ
4 = 0 , (6.17)

R(1)µ
5 = 0 . (6.18)

Note that in the collinear gluon vertices in diagrams A1, A2 we omitted the last term proportional to n̄µ

because after contraction with the polarization vector of our choice this term vanishes, since ⇥+ = 0. For

exactly the same reason diagram A4 vanishes. However, the reason why we ignored n̄�1 in diagram A3 and

why A5 vanishes, is slightly more involved. The point is that both A3 and A5 have a common factor given

by Eq. (5.36) with p ⌅ k. Since from this identity it is obvious that n̄�1 times this combination vanishes,

we are allowed to omit this term in A3. For the same reason A5=0.

In order to reduce the integral d⇤1R
(1)
i to the d�1⇥ integral we use the identity in Eq. (5.5). Also,

substituting Eq. (5.36) into the expression for R(1)
3 makes it obvious that the entire dependence on q�1

appears through the propagators �g(p, q). Using the form of this propagator from Eq. (5.8) we define

the relevant longitudinal integrals I(1)1 , I(1)2 , I(1)3 . We evaluate these integrals in appendix D.2. Thus, using
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Figure 6: Two single Born exchange diagrams (double Born diagrams in the contact limit) contributing to matrix
element in Eq. (6.2). The notation for the scattering centers is the following: ⇤1 = [x1, q1, (b1)i],⇤2 = [x2, q2, (b2)j ].

following expressions:

⇤
d�1d�2R

(2)µ
1 �µ(k) = (ab2b1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

ei⇥0�z2 , (6.30)

⇤
d�1d�2R

(2)µ
2 �µ(k) = (b2b1a)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

�
1� ei⇥0�z1

⇥
, (6.31)

⇤
d�1d�2R

(2)µ
3 �µ(k) = [[a, b2] , b1]R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥ 2(k⇥ � q1⇥ � q2⇥)·�⇥
(k⇥ � q1⇥ � q2⇥)2

�
ei(⇥0�⇥12)�z1 � ei⇥0�z1

⇥
ei(�z2��z1)(⇥0�⇥1) , (6.32)

⇤
d�1d�2R

(2)µ
4 �µ(k) = (b2 [a, b1])R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥2(k⇥ � q1⇥)·�⇥
(k⇥ � q1⇥)2

�
ei(⇥0�⇥1)�z1 � ei⇥0�z1

⇥
, (6.33)

⇤
d�1d�2R

(2)µ
5 �µ(k) = (b2ab1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

�
1� ei⇥0(�z2��z1)

⇥
ei⇥0�z1 ,(6.34)

⇤
d�1d�2R

(2)µ
6 �µ(k) = ([a, b2] b1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥2(k⇥ � q2⇥)·�⇥
(k⇥ � q2⇥)2

�
e�i⇥2(�z2��z1) � 1

⇥
ei⇥0�z2 , (6.35)
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Figure 4: Diagrams in SCET describing splitting of a collinear quark into a collinear quark and a collinear gluon.

6. Medium-induced bremsstrahlung

In this section we use the Feynman rules of SCETG to derive the probability for an energetic quark to emit

a gluon, induced by the jet interactions in QCD matter. This is equivalent to evaluating the di⇥erential

distribution of the number of emitted gluons. We first present this calculation in the vacuum using SCET

and later in the medium using the new SCETG Lagrangian. In each case we consider the covariant gauge

and the initially static source. We also focus on final-state (FS) radiation. In the literature, such a

calculation is typically done in the soft (emitted) gluon approximation. However, in SCET and SCETG

dynamics, the leading interaction describes the collinear gluon emission, which will allow us to go easily

beyond the conventional ⇥ ⇥ E limit. We will perform this new calculation below in section 9, while in

this section we will focus on taking the soft gluon limit and comparing to the previously derived results

for radiative energy loss in QCD matter.

Abrem = ⌅J |T �̄n(x0) e
i
R
d4x(LQCD+LSCETG )|p,k⇧ . (6.1)

To study gluon emission, we start from the matrix element, Eq. (6.1), where J is the underlying hard

process that creates the quark jet, �̄n is the gauge invariant quark field, and p, k are the momenta of the

final state quark and of the emitted gluon, correspondingly. Since in this section we consider only the

case of the initial quark jet, we omit the quark index in the amplitudes below for brevity. The matrix

element in Eq. (6.1) gets contributions from 0, 1, 2, ... Glauber gluon exchanges between the collinear quark

and/or gluon and the sources in the medium. The first three correspond to vacuum emission, single Born

amplitude and two single Born exchanges amplitude, respectively, and are calculated in the subsections

below. To simplify the notation we write the n�Glauber insertion amplitude in the following form8:

A(n) = g �̄n,p

�
n⌅

l=1

⇧
d�l

⇥
R(q1, ..., qn)

(n)µ iJ

�
k + p�

n⇤

k=1

qk

⇥
ei(k+p)x0 ⇤µ(k) . (6.2)

6.1 Obtaining the Altarelli-Parisi splitting function in SCET

A large Q2 process is accompanied by bremsstrahlung even in the absence of in-medium interactions.

Knowledge of the corresponding amplitudes is also essential for the evaluation of the interference e⇥ects

between the di⇥erent sources or radiation for jet production in the QCD medium.

Calculation of the vacuum diagrams in figure 4 leads to the Altarelli-Parisi splitting function for the

q ⇤ qg process. This calculation has been performed in Ref. [52] in the light-cone gauge. We perform the

same calculation here in the covariant gauge. We also demonstrate how in the small x = k+/p+ limit the

relevant radiation piece can be identified at the amplitude level.

8In our notation Rµ stands for “Radiation”.
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where ⇧0 and ⇧1 are defined in Eq. (6.22) above and ⇧2,⇧12 are equal to:

⇧2 =
(k� � q2�)

2

xp+0
, ⇧12 =

(k� � q1� � q2�)
2

xp+0
. (6.36)

In order to understand the lowest opacity contribution to the induced bremsstrahlung, one needs to combine

the single Born diagrams computed in the previous section with the contact double Born limit of the two

single Born exchange diagrams. The contact limit of two single Born exchange longitudinal integrals

is derived in appendix D.2. Using these results we get the following contact limits (or double Born

amplitudes):

R(2c)
1,2,3 =

1

2
R(2)

1,2,3(⇥z2 = ⇥z1) , (6.37)

R(2c)
4 = R(2)

4 (⇥z2 = ⇥z1) , (6.38)

R(2c)
5,6 = 0 . (6.39)

All results in this and the previous subsections, derived in the framework of SCETG , agree with the soft

gluon approximation previously derived in the literature [40, 51]. For example, to first order in opacity

and without explicitly showing the integral over the position of the scattering center we find:

k+
dNg(FS)

dk+d2k
=

�
N

A�

⇥
CF�s

⇤2

⇧
d2q�

⇤
d⌅el(R, T )

d2q�

⌅�
2k� ·q�

k2
�(k� � q�)2

⇥�
1� cos

⇤
(k� � q�)

2

k+
⇥z

⌅⇥
.

(6.40)

However, we can go beyond that and calculate the finite-x corrections to single and double Born diagrams,

similarly to the full Altarelli-Parisi splitting kernel, and not just its soft gluon limit. In section 9 below we

derive analytical formulas for these finite-x corrections to radiative energy loss at first order in opacity.

7. Gauge invariance of the jet broadening and the medium-induced bremsstrahlung
results

In this section we demonstrate that the single and double Born amplitudes calculated in the previous two

sections are gauge invariant. As it is known on the example of SCET, the gauge structure of e⇥ective

theory is more rich than that of a full theory. This is a simple consequence of having multiple modes

for the gauge field. In our calculation we deal with two types of gluons: collinear and Glauber. Thus,

we can gauge fix these two modes completely independently without changing any physical result. Since

Glauber mode is an o⇥-shell mode, it is integrated out from the theory and is presented in the form of

the potential term in Eq. (4.15). Thus, the only gauge freedom for Glauber gluons is the choice of the

propagator �µ�(q) in our e⇥ective potential, which in principle can be arbitrary. The collinear gluon field

on the other hand is a truly propagating degree of freedom, with the corresponding kinetic term contained

in the SCET Lagrangian. For each collinear gluon one could choose a certain gauge-fixing term.

In the previous two sections we considered the fully covariant gauge, in the sense that both collinear

gluons are quantized in the covariant gauge, and also for the Glauber Lagrangian we choose covariant gluon

propagator �µ�(q)R� . Below we consider two alternative gauge choices and demonstrate there equivalence

to the previous results. First, we consider a hybrid gauge where the collinear gluons are in the positive

light-cone gauge and the Glauber potential is in the covariant gauge. Second, we choose both the collinear

gluons and the Glauber potential term in the positive light-cone gauge A+
c,g = 0.
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From the definitions in Eq. (9.15)-Eq. (9.18) we get:

F SB
1 = |�1|2 + |2H1 � �1|2 = 2|�1|2 + 4H2

1 � 4ReH1 ·�1

= 8B2
1 + 8C2

1 + 4H2
1 + 16B1 ·C1 cos(⌥1⇥z)� 8H1 ·B1 cos(⌥0⇥z)� 8H1 ·C1 cos((⌥0 � ⌥1)⇥z) , (9.35)

F SB
2 = �1 (2H1 � �1)

� + (2H1 � �2)
��2 = �F SB

1 + 4H2
1 , (9.36)

FDB
1 = 2H1 · 2Re⇥1 = �12H2

1 + 8H1 ·B1 cos(⌥0⇥z) + 8H1 ·C1 cos((⌥0 � ⌥1)⇥z) , (9.37)

FDB
2 = 2H1 · 2Re⇥2 = �FDB

1 � 4H2
1 . (9.38)

Finally, using these equations we combine the single and double Born form-factors into the sum:

F SB
1 + FDB

1 = 8B2
1 + 8C2

1 � 8H2
1 + 16B1 ·C1 cos(⌥1⇥z) = �16B1 ·C1 (1� cos(⌥1⇥z)) , (9.39)

F SB
2 + FDB

2 = �F SB
1 � FDB

1 . (9.40)

Thus, in the soft gluon approximation we get:

�
⇧SB + ⇧DB

⇥
x⇥1

⇤ (c1 � c2) (�16B1 ·C1) (1� cos(⌥1⇥z)) . (9.41)

Taking into account the phase space factors, the color factors and the final-state coherent medium-induced

emission contribution above, we find:

x
dNg

dxd2k⇤ |x⇥1
= CF

�s

⌅2

 
d�z

⇤g(z)

 
d2q⇤

1

⌃el

d⌃g medium
el

d2q⇤
(�2B1 ·C1) (1� cos(⌥1�z)) . (9.42)

in agreement with Eq. (70) of [51].

Beyond the soft gluon approximation, the full result for the coherent medium-induced bremsstrahlung

reads:

x
dNg

dxd2k⇤
= CF

�s

⌅2

⇤
1� x+

x2

2
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d�z
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⌃el
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el
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⌅2

+ 2
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� A

A2 ·
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C2
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B2 ·
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C2

�
1� cos[(⇥1 � ⇥2)�z] + cos[(⇥2 � ⇥3)�z]

⇥

+
C

C2 ·
⇤

A

A2 +
B

B2 � 2
C

C2

⌅
cos[(⇥1 � ⇥3)�z] +

A

A2 ·
⇤

A

A2 � D

D2

⌅
cos[⇥4�z]

+
A

A2 ·
D

D2 cos[⇥5�z] +

⇧
N2

c � 1

N2
c

⇤
B

B2

⌅2

+
1

N2
c

A

A2 ·
B

B2

⌃
�
1� cos[(⇥1 � ⇥2)�z]

⇥
�
. (9.43)

We leave the discussion of this new result and phenomenological applications to new RHIC and LHC

experimental data [29, 30, 31, 32, 33, 34] for future work. We note however that in Ref. [57] an evaluation

of the medium-induced energy loss beyond the helicity amplitude approximation found ⇥ 18% reduction

in the mean medium-induced energy loss. Our plan for the future is to the large-x radiative correction

reduction e⇤ects at the most di⇤erential level.

10. Conclusions

In summary, we constructed an e⇤ective theory SCETG for energetic quark and gluon p ⇥ [1,⇤2,⇤]

propagation and interaction in dense QCD matter. This theory is well-suited to calculations both in the

quark-gluon plasma [25, 26, 27, 28, 56] and in cold nuclear matter [38, 55, 56, 58].
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Figure 4: Diagrams in SCET describing splitting of a collinear quark into a collinear quark and a collinear gluon.

6. Medium-induced bremsstrahlung

In this section we use the Feynman rules of SCETG to derive the probability for an energetic quark to emit

a gluon, induced by the jet interactions in QCD matter. This is equivalent to evaluating the di⇥erential

distribution of the number of emitted gluons. We first present this calculation in the vacuum using SCET

and later in the medium using the new SCETG Lagrangian. In each case we consider the covariant gauge

and the initially static source. We also focus on final-state (FS) radiation. In the literature, such a

calculation is typically done in the soft (emitted) gluon approximation. However, in SCET and SCETG

dynamics, the leading interaction describes the collinear gluon emission, which will allow us to go easily

beyond the conventional ⇥ ⇥ E limit. We will perform this new calculation below in section 9, while in

this section we will focus on taking the soft gluon limit and comparing to the previously derived results

for radiative energy loss in QCD matter.

Abrem = ⌅J |T �̄n(x0) e
i
R
d4x(LQCD+LSCETG )|p,k⇧ . (6.1)

To study gluon emission, we start from the matrix element, Eq. (6.1), where J is the underlying hard

process that creates the quark jet, �̄n is the gauge invariant quark field, and p, k are the momenta of the

final state quark and of the emitted gluon, correspondingly. Since in this section we consider only the

case of the initial quark jet, we omit the quark index in the amplitudes below for brevity. The matrix

element in Eq. (6.1) gets contributions from 0, 1, 2, ... Glauber gluon exchanges between the collinear quark

and/or gluon and the sources in the medium. The first three correspond to vacuum emission, single Born

amplitude and two single Born exchanges amplitude, respectively, and are calculated in the subsections

below. To simplify the notation we write the n�Glauber insertion amplitude in the following form8:

A(n) = g �̄n,p

�
n⌅

l=1

⇧
d�l

⇥
R(q1, ..., qn)

(n)µ iJ

�
k + p�

n⇤

k=1

qk

⇥
ei(k+p)x0 ⇤µ(k) . (6.2)

6.1 Obtaining the Altarelli-Parisi splitting function in SCET

A large Q2 process is accompanied by bremsstrahlung even in the absence of in-medium interactions.

Knowledge of the corresponding amplitudes is also essential for the evaluation of the interference e⇥ects

between the di⇥erent sources or radiation for jet production in the QCD medium.

Calculation of the vacuum diagrams in figure 4 leads to the Altarelli-Parisi splitting function for the

q ⇤ qg process. This calculation has been performed in Ref. [52] in the light-cone gauge. We perform the

same calculation here in the covariant gauge. We also demonstrate how in the small x = k+/p+ limit the

relevant radiation piece can be identified at the amplitude level.

8In our notation Rµ stands for “Radiation”.
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Figure 5: Single Born diagrams contributing to the medium-induced gluon bremsstrahlung Eq. (6.2). The notation
for the scattering centers is the following: ⇤1 = [x1, q1, (b1)i].

we get the following expressions for the amplitudes in figure 5:

R(1)µ
1 = i(a)R

�
nµ +

�µ⇥(p/⇥ + k/⇥)

p+ + k+
+

p/⇥�
µ
⇥

p+

⇥
i(p+ + k+)

(p+ k)2 + i⇥
i (b1)R (b1)Ti i�g(p+ k, q1) , (6.14)

R(1)µ
2 = i(b1)R(b1)Tii�g(p, q1)i(a)R

�
nµ +

�µ⇥(p/⇥ + k/⇥ � q/1⇥)

p+
+

(p/⇥ � q/1⇥)�
µ
⇥

p+

⇥
i�g(p+ k, q1) , (6.15)

R(1)µ
3 = i(c1)R

�
n�1 +

��1⇥ (p/⇥ + k/⇥ � q/1⇥)

p+
+

p/⇥�
�1
⇥

p+

⇥

⇥ (�i)�g(k, q1)

n̄·k N
(R�)
�1�2 (k � q1) i�g(p+ k, q1) f

c1ab1(b1)Ti ⇥̃
�2µ
1 (k � q1, k). (6.16)

R(1)µ
4 = 0 , (6.17)

R(1)µ
5 = 0 . (6.18)

Note that in the collinear gluon vertices in diagrams A1, A2 we omitted the last term proportional to n̄µ

because after contraction with the polarization vector of our choice this term vanishes, since ⇥+ = 0. For

exactly the same reason diagram A4 vanishes. However, the reason why we ignored n̄�1 in diagram A3 and

why A5 vanishes, is slightly more involved. The point is that both A3 and A5 have a common factor given

by Eq. (5.36) with p ⌅ k. Since from this identity it is obvious that n̄�1 times this combination vanishes,

we are allowed to omit this term in A3. For the same reason A5=0.

In order to reduce the integral d⇤1R
(1)
i to the d�1⇥ integral we use the identity in Eq. (5.5). Also,

substituting Eq. (5.36) into the expression for R(1)
3 makes it obvious that the entire dependence on q�1

appears through the propagators �g(p, q). Using the form of this propagator from Eq. (5.8) we define

the relevant longitudinal integrals I(1)1 , I(1)2 , I(1)3 . We evaluate these integrals in appendix D.2. Thus, using

– 21 –

A(2)
1 =

p

x0

J

k
µ, a

�1 �2

q1 q2

p

x0

J
q1 q2

A(2)
2 =

k
µ, a

�1 �2

A(2)
3 =

p

x0

J

k µ, a

�1 �2

q1 q2

p

x0

J

k
µ, a

A(2)
4 =

�1 �2

q1 q2

A(2)
5 =

p

x0

J

k
µ, a

�1 �2

q1 q2

A(2)
6 =

p

x0

J

k µ, a

�1 �2

q1 q2

p

x0

k
µ, a

A(2)
7 = J

�1 �2

q1 q2

k

p

x0

A(2)
8 =

µ, a

J

�1 �2

q1 q2

p

x0

A(2)
9 =

k µ, a

J

�1 �2

q1 q2

Figure 6: Two single Born exchange diagrams (double Born diagrams in the contact limit) contributing to matrix
element in Eq. (6.2). The notation for the scattering centers is the following: ⇤1 = [x1, q1, (b1)i],⇤2 = [x2, q2, (b2)j ].

following expressions:

⇤
d�1d�2R

(2)µ
1 �µ(k) = (ab2b1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

ei⇥0�z2 , (6.30)

⇤
d�1d�2R

(2)µ
2 �µ(k) = (b2b1a)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

�
1� ei⇥0�z1

⇥
, (6.31)

⇤
d�1d�2R

(2)µ
3 �µ(k) = [[a, b2] , b1]R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥ 2(k⇥ � q1⇥ � q2⇥)·�⇥
(k⇥ � q1⇥ � q2⇥)2

�
ei(⇥0�⇥12)�z1 � ei⇥0�z1

⇥
ei(�z2��z1)(⇥0�⇥1) , (6.32)

⇤
d�1d�2R

(2)µ
4 �µ(k) = (b2 [a, b1])R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥2(k⇥ � q1⇥)·�⇥
(k⇥ � q1⇥)2

�
ei(⇥0�⇥1)�z1 � ei⇥0�z1

⇥
, (6.33)

⇤
d�1d�2R

(2)µ
5 �µ(k) = (b2ab1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

�
1� ei⇥0(�z2��z1)

⇥
ei⇥0�z1 ,(6.34)

⇤
d�1d�2R

(2)µ
6 �µ(k) = ([a, b2] b1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥2(k⇥ � q2⇥)·�⇥
(k⇥ � q2⇥)2

�
e�i⇥2(�z2��z1) � 1

⇥
ei⇥0�z2 , (6.35)
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6. Medium-induced bremsstrahlung

In this section we use the Feynman rules of SCETG to derive the probability for an energetic quark to emit

a gluon, induced by the jet interactions in QCD matter. This is equivalent to evaluating the di⇥erential

distribution of the number of emitted gluons. We first present this calculation in the vacuum using SCET

and later in the medium using the new SCETG Lagrangian. In each case we consider the covariant gauge

and the initially static source. We also focus on final-state (FS) radiation. In the literature, such a

calculation is typically done in the soft (emitted) gluon approximation. However, in SCET and SCETG

dynamics, the leading interaction describes the collinear gluon emission, which will allow us to go easily

beyond the conventional ⇥ ⇥ E limit. We will perform this new calculation below in section 9, while in

this section we will focus on taking the soft gluon limit and comparing to the previously derived results

for radiative energy loss in QCD matter.

Abrem = ⌅J |T �̄n(x0) e
i
R
d4x(LQCD+LSCETG )|p,k⇧ . (6.1)

To study gluon emission, we start from the matrix element, Eq. (6.1), where J is the underlying hard

process that creates the quark jet, �̄n is the gauge invariant quark field, and p, k are the momenta of the

final state quark and of the emitted gluon, correspondingly. Since in this section we consider only the

case of the initial quark jet, we omit the quark index in the amplitudes below for brevity. The matrix

element in Eq. (6.1) gets contributions from 0, 1, 2, ... Glauber gluon exchanges between the collinear quark

and/or gluon and the sources in the medium. The first three correspond to vacuum emission, single Born

amplitude and two single Born exchanges amplitude, respectively, and are calculated in the subsections

below. To simplify the notation we write the n�Glauber insertion amplitude in the following form8:

A(n) = g �̄n,p

�
n⌅

l=1

⇧
d�l

⇥
R(q1, ..., qn)

(n)µ iJ

�
k + p�

n⇤

k=1

qk

⇥
ei(k+p)x0 ⇤µ(k) . (6.2)

6.1 Obtaining the Altarelli-Parisi splitting function in SCET

A large Q2 process is accompanied by bremsstrahlung even in the absence of in-medium interactions.

Knowledge of the corresponding amplitudes is also essential for the evaluation of the interference e⇥ects

between the di⇥erent sources or radiation for jet production in the QCD medium.

Calculation of the vacuum diagrams in figure 4 leads to the Altarelli-Parisi splitting function for the

q ⇤ qg process. This calculation has been performed in Ref. [52] in the light-cone gauge. We perform the

same calculation here in the covariant gauge. We also demonstrate how in the small x = k+/p+ limit the

relevant radiation piece can be identified at the amplitude level.

8In our notation Rµ stands for “Radiation”.
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where ⇧0 and ⇧1 are defined in Eq. (6.22) above and ⇧2,⇧12 are equal to:

⇧2 =
(k� � q2�)

2

xp+0
, ⇧12 =

(k� � q1� � q2�)
2

xp+0
. (6.36)

In order to understand the lowest opacity contribution to the induced bremsstrahlung, one needs to combine

the single Born diagrams computed in the previous section with the contact double Born limit of the two

single Born exchange diagrams. The contact limit of two single Born exchange longitudinal integrals

is derived in appendix D.2. Using these results we get the following contact limits (or double Born

amplitudes):

R(2c)
1,2,3 =

1

2
R(2)

1,2,3(⇥z2 = ⇥z1) , (6.37)

R(2c)
4 = R(2)

4 (⇥z2 = ⇥z1) , (6.38)

R(2c)
5,6 = 0 . (6.39)

All results in this and the previous subsections, derived in the framework of SCETG , agree with the soft

gluon approximation previously derived in the literature [40, 51]. For example, to first order in opacity

and without explicitly showing the integral over the position of the scattering center we find:

k+
dNg(FS)

dk+d2k
=

�
N

A�

⇥
CF�s

⇤2

⇧
d2q�

⇤
d⌅el(R, T )

d2q�

⌅�
2k� ·q�

k2
�(k� � q�)2

⇥�
1� cos

⇤
(k� � q�)

2

k+
⇥z

⌅⇥
.

(6.40)

However, we can go beyond that and calculate the finite-x corrections to single and double Born diagrams,

similarly to the full Altarelli-Parisi splitting kernel, and not just its soft gluon limit. In section 9 below we

derive analytical formulas for these finite-x corrections to radiative energy loss at first order in opacity.

7. Gauge invariance of the jet broadening and the medium-induced bremsstrahlung
results

In this section we demonstrate that the single and double Born amplitudes calculated in the previous two

sections are gauge invariant. As it is known on the example of SCET, the gauge structure of e⇥ective

theory is more rich than that of a full theory. This is a simple consequence of having multiple modes

for the gauge field. In our calculation we deal with two types of gluons: collinear and Glauber. Thus,

we can gauge fix these two modes completely independently without changing any physical result. Since

Glauber mode is an o⇥-shell mode, it is integrated out from the theory and is presented in the form of

the potential term in Eq. (4.15). Thus, the only gauge freedom for Glauber gluons is the choice of the

propagator �µ�(q) in our e⇥ective potential, which in principle can be arbitrary. The collinear gluon field

on the other hand is a truly propagating degree of freedom, with the corresponding kinetic term contained

in the SCET Lagrangian. For each collinear gluon one could choose a certain gauge-fixing term.

In the previous two sections we considered the fully covariant gauge, in the sense that both collinear

gluons are quantized in the covariant gauge, and also for the Glauber Lagrangian we choose covariant gluon

propagator �µ�(q)R� . Below we consider two alternative gauge choices and demonstrate there equivalence

to the previous results. First, we consider a hybrid gauge where the collinear gluons are in the positive

light-cone gauge and the Glauber potential is in the covariant gauge. Second, we choose both the collinear

gluons and the Glauber potential term in the positive light-cone gauge A+
c,g = 0.
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From the definitions in Eq. (9.15)-Eq. (9.18) we get:

F SB
1 = |�1|2 + |2H1 � �1|2 = 2|�1|2 + 4H2

1 � 4ReH1 ·�1

= 8B2
1 + 8C2

1 + 4H2
1 + 16B1 ·C1 cos(⌥1⇥z)� 8H1 ·B1 cos(⌥0⇥z)� 8H1 ·C1 cos((⌥0 � ⌥1)⇥z) , (9.35)

F SB
2 = �1 (2H1 � �1)

� + (2H1 � �2)
��2 = �F SB

1 + 4H2
1 , (9.36)

FDB
1 = 2H1 · 2Re⇥1 = �12H2

1 + 8H1 ·B1 cos(⌥0⇥z) + 8H1 ·C1 cos((⌥0 � ⌥1)⇥z) , (9.37)

FDB
2 = 2H1 · 2Re⇥2 = �FDB

1 � 4H2
1 . (9.38)

Finally, using these equations we combine the single and double Born form-factors into the sum:

F SB
1 + FDB

1 = 8B2
1 + 8C2

1 � 8H2
1 + 16B1 ·C1 cos(⌥1⇥z) = �16B1 ·C1 (1� cos(⌥1⇥z)) , (9.39)

F SB
2 + FDB

2 = �F SB
1 � FDB

1 . (9.40)

Thus, in the soft gluon approximation we get:

�
⇧SB + ⇧DB

⇥
x⇥1

⇤ (c1 � c2) (�16B1 ·C1) (1� cos(⌥1⇥z)) . (9.41)

Taking into account the phase space factors, the color factors and the final-state coherent medium-induced

emission contribution above, we find:
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in agreement with Eq. (70) of [51].

Beyond the soft gluon approximation, the full result for the coherent medium-induced bremsstrahlung

reads:
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We leave the discussion of this new result and phenomenological applications to new RHIC and LHC

experimental data [29, 30, 31, 32, 33, 34] for future work. We note however that in Ref. [57] an evaluation

of the medium-induced energy loss beyond the helicity amplitude approximation found ⇥ 18% reduction

in the mean medium-induced energy loss. Our plan for the future is to the large-x radiative correction

reduction e⇤ects at the most di⇤erential level.

10. Conclusions

In summary, we constructed an e⇤ective theory SCETG for energetic quark and gluon p ⇥ [1,⇤2,⇤]

propagation and interaction in dense QCD matter. This theory is well-suited to calculations both in the

quark-gluon plasma [25, 26, 27, 28, 56] and in cold nuclear matter [38, 55, 56, 58].
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6. Medium-induced bremsstrahlung

In this section we use the Feynman rules of SCETG to derive the probability for an energetic quark to emit

a gluon, induced by the jet interactions in QCD matter. This is equivalent to evaluating the di⇥erential

distribution of the number of emitted gluons. We first present this calculation in the vacuum using SCET

and later in the medium using the new SCETG Lagrangian. In each case we consider the covariant gauge

and the initially static source. We also focus on final-state (FS) radiation. In the literature, such a

calculation is typically done in the soft (emitted) gluon approximation. However, in SCET and SCETG

dynamics, the leading interaction describes the collinear gluon emission, which will allow us to go easily

beyond the conventional ⇥ ⇥ E limit. We will perform this new calculation below in section 9, while in

this section we will focus on taking the soft gluon limit and comparing to the previously derived results

for radiative energy loss in QCD matter.

Abrem = ⌅J |T �̄n(x0) e
i
R
d4x(LQCD+LSCETG )|p,k⇧ . (6.1)

To study gluon emission, we start from the matrix element, Eq. (6.1), where J is the underlying hard

process that creates the quark jet, �̄n is the gauge invariant quark field, and p, k are the momenta of the

final state quark and of the emitted gluon, correspondingly. Since in this section we consider only the

case of the initial quark jet, we omit the quark index in the amplitudes below for brevity. The matrix

element in Eq. (6.1) gets contributions from 0, 1, 2, ... Glauber gluon exchanges between the collinear quark

and/or gluon and the sources in the medium. The first three correspond to vacuum emission, single Born

amplitude and two single Born exchanges amplitude, respectively, and are calculated in the subsections

below. To simplify the notation we write the n�Glauber insertion amplitude in the following form8:

A(n) = g �̄n,p

�
n⌅

l=1

⇧
d�l

⇥
R(q1, ..., qn)

(n)µ iJ

�
k + p�

n⇤

k=1

qk

⇥
ei(k+p)x0 ⇤µ(k) . (6.2)

6.1 Obtaining the Altarelli-Parisi splitting function in SCET

A large Q2 process is accompanied by bremsstrahlung even in the absence of in-medium interactions.

Knowledge of the corresponding amplitudes is also essential for the evaluation of the interference e⇥ects

between the di⇥erent sources or radiation for jet production in the QCD medium.

Calculation of the vacuum diagrams in figure 4 leads to the Altarelli-Parisi splitting function for the

q ⇤ qg process. This calculation has been performed in Ref. [52] in the light-cone gauge. We perform the

same calculation here in the covariant gauge. We also demonstrate how in the small x = k+/p+ limit the

relevant radiation piece can be identified at the amplitude level.

8In our notation Rµ stands for “Radiation”.
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Figure 5: Single Born diagrams contributing to the medium-induced gluon bremsstrahlung Eq. (6.2). The notation
for the scattering centers is the following: ⇤1 = [x1, q1, (b1)i].

we get the following expressions for the amplitudes in figure 5:

R(1)µ
1 = i(a)R

�
nµ +

�µ⇥(p/⇥ + k/⇥)

p+ + k+
+

p/⇥�
µ
⇥

p+

⇥
i(p+ + k+)

(p+ k)2 + i⇥
i (b1)R (b1)Ti i�g(p+ k, q1) , (6.14)

R(1)µ
2 = i(b1)R(b1)Tii�g(p, q1)i(a)R

�
nµ +

�µ⇥(p/⇥ + k/⇥ � q/1⇥)

p+
+

(p/⇥ � q/1⇥)�
µ
⇥

p+

⇥
i�g(p+ k, q1) , (6.15)

R(1)µ
3 = i(c1)R

�
n�1 +

��1⇥ (p/⇥ + k/⇥ � q/1⇥)

p+
+

p/⇥�
�1
⇥

p+

⇥

⇥ (�i)�g(k, q1)

n̄·k N
(R�)
�1�2 (k � q1) i�g(p+ k, q1) f

c1ab1(b1)Ti ⇥̃
�2µ
1 (k � q1, k). (6.16)

R(1)µ
4 = 0 , (6.17)

R(1)µ
5 = 0 . (6.18)

Note that in the collinear gluon vertices in diagrams A1, A2 we omitted the last term proportional to n̄µ

because after contraction with the polarization vector of our choice this term vanishes, since ⇥+ = 0. For

exactly the same reason diagram A4 vanishes. However, the reason why we ignored n̄�1 in diagram A3 and

why A5 vanishes, is slightly more involved. The point is that both A3 and A5 have a common factor given

by Eq. (5.36) with p ⌅ k. Since from this identity it is obvious that n̄�1 times this combination vanishes,

we are allowed to omit this term in A3. For the same reason A5=0.

In order to reduce the integral d⇤1R
(1)
i to the d�1⇥ integral we use the identity in Eq. (5.5). Also,

substituting Eq. (5.36) into the expression for R(1)
3 makes it obvious that the entire dependence on q�1

appears through the propagators �g(p, q). Using the form of this propagator from Eq. (5.8) we define

the relevant longitudinal integrals I(1)1 , I(1)2 , I(1)3 . We evaluate these integrals in appendix D.2. Thus, using
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following expressions:

⇤
d�1d�2R

(2)µ
1 �µ(k) = (ab2b1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

ei⇥0�z2 , (6.30)

⇤
d�1d�2R

(2)µ
2 �µ(k) = (b2b1a)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

�
1� ei⇥0�z1

⇥
, (6.31)

⇤
d�1d�2R

(2)µ
3 �µ(k) = [[a, b2] , b1]R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥ 2(k⇥ � q1⇥ � q2⇥)·�⇥
(k⇥ � q1⇥ � q2⇥)2

�
ei(⇥0�⇥12)�z1 � ei⇥0�z1

⇥
ei(�z2��z1)(⇥0�⇥1) , (6.32)

⇤
d�1d�2R

(2)µ
4 �µ(k) = (b2 [a, b1])R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥2(k⇥ � q1⇥)·�⇥
(k⇥ � q1⇥)2

�
ei(⇥0�⇥1)�z1 � ei⇥0�z1

⇥
, (6.33)

⇤
d�1d�2R

(2)µ
5 �µ(k) = (b2ab1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

2k⇥ ·�⇥
k2
⇥

�
1� ei⇥0(�z2��z1)

⇥
ei⇥0�z1 ,(6.34)

⇤
d�1d�2R

(2)µ
6 �µ(k) = ([a, b2] b1)R (b1)Ti(b2)Tj

⇤
d�1⇥d�2⇥

⇥2(k⇥ � q2⇥)·�⇥
(k⇥ � q2⇥)2

�
e�i⇥2(�z2��z1) � 1

⇥
ei⇥0�z2 , (6.35)
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6. Medium-induced bremsstrahlung

In this section we use the Feynman rules of SCETG to derive the probability for an energetic quark to emit

a gluon, induced by the jet interactions in QCD matter. This is equivalent to evaluating the di⇥erential

distribution of the number of emitted gluons. We first present this calculation in the vacuum using SCET

and later in the medium using the new SCETG Lagrangian. In each case we consider the covariant gauge

and the initially static source. We also focus on final-state (FS) radiation. In the literature, such a

calculation is typically done in the soft (emitted) gluon approximation. However, in SCET and SCETG

dynamics, the leading interaction describes the collinear gluon emission, which will allow us to go easily

beyond the conventional ⇥ ⇥ E limit. We will perform this new calculation below in section 9, while in

this section we will focus on taking the soft gluon limit and comparing to the previously derived results

for radiative energy loss in QCD matter.

Abrem = ⌅J |T �̄n(x0) e
i
R
d4x(LQCD+LSCETG )|p,k⇧ . (6.1)

To study gluon emission, we start from the matrix element, Eq. (6.1), where J is the underlying hard

process that creates the quark jet, �̄n is the gauge invariant quark field, and p, k are the momenta of the

final state quark and of the emitted gluon, correspondingly. Since in this section we consider only the

case of the initial quark jet, we omit the quark index in the amplitudes below for brevity. The matrix

element in Eq. (6.1) gets contributions from 0, 1, 2, ... Glauber gluon exchanges between the collinear quark

and/or gluon and the sources in the medium. The first three correspond to vacuum emission, single Born

amplitude and two single Born exchanges amplitude, respectively, and are calculated in the subsections

below. To simplify the notation we write the n�Glauber insertion amplitude in the following form8:

A(n) = g �̄n,p

�
n⌅

l=1

⇧
d�l

⇥
R(q1, ..., qn)

(n)µ iJ

�
k + p�

n⇤

k=1

qk

⇥
ei(k+p)x0 ⇤µ(k) . (6.2)

6.1 Obtaining the Altarelli-Parisi splitting function in SCET

A large Q2 process is accompanied by bremsstrahlung even in the absence of in-medium interactions.

Knowledge of the corresponding amplitudes is also essential for the evaluation of the interference e⇥ects

between the di⇥erent sources or radiation for jet production in the QCD medium.

Calculation of the vacuum diagrams in figure 4 leads to the Altarelli-Parisi splitting function for the

q ⇤ qg process. This calculation has been performed in Ref. [52] in the light-cone gauge. We perform the

same calculation here in the covariant gauge. We also demonstrate how in the small x = k+/p+ limit the

relevant radiation piece can be identified at the amplitude level.

8In our notation Rµ stands for “Radiation”.
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where ⇧0 and ⇧1 are defined in Eq. (6.22) above and ⇧2,⇧12 are equal to:

⇧2 =
(k� � q2�)

2

xp+0
, ⇧12 =

(k� � q1� � q2�)
2

xp+0
. (6.36)

In order to understand the lowest opacity contribution to the induced bremsstrahlung, one needs to combine

the single Born diagrams computed in the previous section with the contact double Born limit of the two

single Born exchange diagrams. The contact limit of two single Born exchange longitudinal integrals

is derived in appendix D.2. Using these results we get the following contact limits (or double Born

amplitudes):

R(2c)
1,2,3 =

1

2
R(2)

1,2,3(⇥z2 = ⇥z1) , (6.37)

R(2c)
4 = R(2)

4 (⇥z2 = ⇥z1) , (6.38)

R(2c)
5,6 = 0 . (6.39)

All results in this and the previous subsections, derived in the framework of SCETG , agree with the soft

gluon approximation previously derived in the literature [40, 51]. For example, to first order in opacity

and without explicitly showing the integral over the position of the scattering center we find:

k+
dNg(FS)

dk+d2k
=

�
N

A�

⇥
CF�s

⇤2

⇧
d2q�

⇤
d⌅el(R, T )

d2q�

⌅�
2k� ·q�

k2
�(k� � q�)2

⇥�
1� cos

⇤
(k� � q�)

2

k+
⇥z

⌅⇥
.

(6.40)

However, we can go beyond that and calculate the finite-x corrections to single and double Born diagrams,

similarly to the full Altarelli-Parisi splitting kernel, and not just its soft gluon limit. In section 9 below we

derive analytical formulas for these finite-x corrections to radiative energy loss at first order in opacity.

7. Gauge invariance of the jet broadening and the medium-induced bremsstrahlung
results

In this section we demonstrate that the single and double Born amplitudes calculated in the previous two

sections are gauge invariant. As it is known on the example of SCET, the gauge structure of e⇥ective

theory is more rich than that of a full theory. This is a simple consequence of having multiple modes

for the gauge field. In our calculation we deal with two types of gluons: collinear and Glauber. Thus,

we can gauge fix these two modes completely independently without changing any physical result. Since

Glauber mode is an o⇥-shell mode, it is integrated out from the theory and is presented in the form of

the potential term in Eq. (4.15). Thus, the only gauge freedom for Glauber gluons is the choice of the

propagator �µ�(q) in our e⇥ective potential, which in principle can be arbitrary. The collinear gluon field

on the other hand is a truly propagating degree of freedom, with the corresponding kinetic term contained

in the SCET Lagrangian. For each collinear gluon one could choose a certain gauge-fixing term.

In the previous two sections we considered the fully covariant gauge, in the sense that both collinear

gluons are quantized in the covariant gauge, and also for the Glauber Lagrangian we choose covariant gluon

propagator �µ�(q)R� . Below we consider two alternative gauge choices and demonstrate there equivalence

to the previous results. First, we consider a hybrid gauge where the collinear gluons are in the positive

light-cone gauge and the Glauber potential is in the covariant gauge. Second, we choose both the collinear

gluons and the Glauber potential term in the positive light-cone gauge A+
c,g = 0.
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From the definitions in Eq. (9.15)-Eq. (9.18) we get:

F SB
1 = |�1|2 + |2H1 � �1|2 = 2|�1|2 + 4H2

1 � 4ReH1 ·�1

= 8B2
1 + 8C2

1 + 4H2
1 + 16B1 ·C1 cos(⌥1⇥z)� 8H1 ·B1 cos(⌥0⇥z)� 8H1 ·C1 cos((⌥0 � ⌥1)⇥z) , (9.35)

F SB
2 = �1 (2H1 � �1)

� + (2H1 � �2)
��2 = �F SB

1 + 4H2
1 , (9.36)

FDB
1 = 2H1 · 2Re⇥1 = �12H2

1 + 8H1 ·B1 cos(⌥0⇥z) + 8H1 ·C1 cos((⌥0 � ⌥1)⇥z) , (9.37)

FDB
2 = 2H1 · 2Re⇥2 = �FDB

1 � 4H2
1 . (9.38)

Finally, using these equations we combine the single and double Born form-factors into the sum:

F SB
1 + FDB

1 = 8B2
1 + 8C2

1 � 8H2
1 + 16B1 ·C1 cos(⌥1⇥z) = �16B1 ·C1 (1� cos(⌥1⇥z)) , (9.39)

F SB
2 + FDB

2 = �F SB
1 � FDB

1 . (9.40)

Thus, in the soft gluon approximation we get:

�
⇧SB + ⇧DB

⇥
x⇥1

⇤ (c1 � c2) (�16B1 ·C1) (1� cos(⌥1⇥z)) . (9.41)

Taking into account the phase space factors, the color factors and the final-state coherent medium-induced

emission contribution above, we find:

x
dNg

dxd2k⇤ |x⇥1
= CF

�s

⌅2

 
d�z

⇤g(z)

 
d2q⇤

1

⌃el

d⌃g medium
el

d2q⇤
(�2B1 ·C1) (1� cos(⌥1�z)) . (9.42)

in agreement with Eq. (70) of [51].

Beyond the soft gluon approximation, the full result for the coherent medium-induced bremsstrahlung

reads:

x
dNg

dxd2k⇤
= CF

�s

⌅2

⇤
1� x+

x2

2

⌅ 
d�z

⇤g(z)

 
d2q⇤

1

⌃el
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el

d2q⇤

⌥
�
⇤

A

A2

⌅2

+ 2

⇤
C

C2
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� A

A2 ·
C

C2

� B

B2 ·
C

C2

�
1� cos[(⇥1 � ⇥2)�z] + cos[(⇥2 � ⇥3)�z]

⇥

+
C

C2 ·
⇤

A

A2 +
B

B2 � 2
C

C2

⌅
cos[(⇥1 � ⇥3)�z] +

A

A2 ·
⇤

A

A2 � D

D2

⌅
cos[⇥4�z]

+
A

A2 ·
D

D2 cos[⇥5�z] +

⇧
N2

c � 1

N2
c

⇤
B

B2

⌅2

+
1

N2
c

A

A2 ·
B

B2

⌃
�
1� cos[(⇥1 � ⇥2)�z]

⇥
�
. (9.43)

We leave the discussion of this new result and phenomenological applications to new RHIC and LHC

experimental data [29, 30, 31, 32, 33, 34] for future work. We note however that in Ref. [57] an evaluation

of the medium-induced energy loss beyond the helicity amplitude approximation found ⇥ 18% reduction

in the mean medium-induced energy loss. Our plan for the future is to the large-x radiative correction

reduction e⇤ects at the most di⇤erential level.

10. Conclusions

In summary, we constructed an e⇤ective theory SCETG for energetic quark and gluon p ⇥ [1,⇤2,⇤]

propagation and interaction in dense QCD matter. This theory is well-suited to calculations both in the

quark-gluon plasma [25, 26, 27, 28, 56] and in cold nuclear matter [38, 55, 56, 58].

– 37 –

Our new result:

GO, Vitev,11 Reduces for x<<1 to formula above

Tuesday, March 8, 2011

An	  approximate	  formula	  in	  small	  x	  
approxima2on	  for	  LPM	  effect	  has	  
been	  derived	  in	  GLV,	  00	  	  
	  
Later	  extended	  to	  ini2al	  state	  
interac2ons	  in	  Vitev,	  07	  

GO,	  Vitev,	  11	  



Medium-‐induced	  spliTng	  kernels	  
7

10-3 10-2 10-1 100
x

10-2

10-1

100

101

 (x
dN

/d
x)

q 
−

>
 q

g

No cuts, no recoil
qmax=(E0µ/2)1/2, kmax=E0(x(1-x))1/2, no recoil

qmax=(2E0µ)
1/2, kmax=E0(x(1-x))1/2, no recoil

Full kinematics cut, no recoil
Full kinematics cut, recoil m2=1 GeV

L=5 fm, µ=0.75 GeV, λg=1 fm, αs=0.3

10-3 10-2 10-1 100
x

10-1

100

101

102

 (x
dN

/d
x)

g 
−

>
 g

g

No cuts, no recoil
qmax=(E0µ/2)1/2, kmax=E0(x(1-x))1/2, no recoil

qmax=(2E0µ)
1/2, kmax=E0(x(1-x))1/2, no recoil

Full kinematics cut, no recoil
Full kinematics cut, recoil m2=1 GeV

L=5 fm, µ=0.75 GeV, λg=1 fm, αs=0.3

10-3 10-2 10-1 100
x

10-4

10-3

10-2

10-1

100

 (x
dN

/d
x)

g 
−

>
q

q

No cuts, no recoil
qmax=(E0µ/2)1/2, kmax=E0(x(1-x))1/2, no recoil

qmax=(2E0µ)
1/2, kmax=E0(x(1-x))1/2, no recoil

Full kinematics cut, no recoil
Full kinematics cut, recoil m2=1 GeV

L=5 fm, µ=0.75 GeV, λg=1 fm, αs=0.3

10-3 10-2 10-1 100
x

10-4

10-3

10-2

10-1

100

101

 (x
dN

/d
x)

q 
−

>
 g

q

No cuts, no recoil
qmax=(E0µ/2)1/2, kmax=E0(x(1-x))1/2, no recoil

qmax=(2E0µ)
1/2, kmax=E0(x(1-x))1/2, no recoil

Full kinematics cut, no recoil
Full kinematics cut, recoil m2=1 GeV

L=5 fm, µ=0.75 GeV, λg=1 fm, αs=0.3

FIG. 3: Illustration of the effect of phase space cuts and medium recoil on the medium-induced parton splitting. The same
QCD medium parameters and initial jet energy as in figure 2 are used.

qmax =
√

µE0/2, b) the dashed blue curve corresponds
to qmax =

√
2µE0, c) the dot-dashed black curve corre-

sponds to the exact phase space, given by 2 → 2 scatter-
ing available phase space. Finally, the solid black curve
includes the recoil effect which is calculated by substi-
tuting the normalized cross section in Eq. (21) by the
2 → 2 t-channel differential cross section, which can be
found in Eqs. (3.2-3.3) in Ref. [40]. From the definition
of cut on k⊥, for small x we have kmax ∼ Q

√
x → 0.

From figure 3 one can see that for small x the cut on k⊥

is the only one that affects the splitting intensity, since
all three types of cuts on q⊥ give practically identical
results. As far as the intermediate x region is concerned,
the cut on k⊥ does not play a significant role since from
the definition kmax(x ∼ 1/2) ∼ Q/2, thus the observ-
able difference must be attributed to the cut on q⊥ for
this region. The kinematic cut on q⊥, however, can lead
to a factor of 2 variation of the in-medium parton split-
ting intensities at intermediate x. Note that for interme-
diate x the third cut on q⊥, which corresponds to full
kinematics but retains the 1/q4

⊥
dependence of the scat-

tering cross section Eq. (21), agrees perfectly with the
uncut solid red curve. In this case, cuts alone (in the
sense of full kinematics) do not affect significantly the
in-medium branching processes. We find that what af-
fects the splitting intensity is the deviation between the
exact scattering cross section from [40] and the approx-

imate power-law form in Eq. (21). This is illustrated
in figure 3 by the solid black curve that pushes the in-
tensity of the medium-induced branching processes down
when compared to the dot-dashed black curve. We finally
note that if one wishes to simplify the calculation and
use the approximate form Eq. (21) for in-medium parton
scattering the most adequate transverse momentum cut
would be qmax =

√
µE0. Finally, for x → 1, we find that

kmax ∼ Q
√
1− x → 0, and all the splitting intensities

with phase space cuts turn over at large enough x, which
is not visible in figure 3 because we do not plot values of
x very close to 1.
Numerically, all effects: finite x, phase space cuts, re-

coil effect are of the same order at high energies. In ad-
dition, we observe that parton recoil, similar to finite x
corrections appears at intermediate x, while phase space
cuts play role both for small x and intermediate x.

V. CONCLUSIONS

In this Letter we derived the medium-induced parton
splittings for quarks and gluons produced in large Q2

scattering processes that subsequently traverse a region
of dense QCD matter and undergo final-state interactions
using a recently constructed effective theory SCETG [40].
Our results include both the contributions from the in-
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FIG. 2: The intensity spectrum x(dN/dx) for infinite phase space cuts and neglecting nuclear recoil is shown as a function of
the splitting parameter x. Comparison of the analytic formulas in Eq. (27)-Eq. (29) (solid lines) to a numerical integration
method (dashed lines) are presented. We also illustrate the difference between the full in-medium splitting results and the
small-x approximation on the example of a parton of initial energy E0 = 100GeV. The medium parameters are set to:
µ = 0.75 GeV, λg = 1 fm, L = 5 fm for definiteness and the scattering length is independent of ∆z.

The intensity spectrum for the last splitting q → gq can
be obtained from substitution x → 1 − x in the q → qg
splitting and is given in Eq. (25).

IV. NUMERICAL RESULTS

In this section we study the effects of kinematic cuts
and recoil of the medium by evaluating dN/dx numer-
ically. In so doing, we demonstrate control over the
numerical evaluation, keeping in mind that future ap-
plications will require such approach to incorporate the
finite kinematics, the spatially non-uniform and time-
dependent density of the QCD matter, and the recoil
of the in-medium partons. For each splitting we con-
sider the full result given by Eq. (16) - Eq. (17) and
compare it to the small-x limit presented in Eq. (18).
In this paper we consider a medium of uniform density
for simplicity and set the parameters of the simulation
as follows: the typical inverse range of the parton scat-
tering in the medium is µ = 0.75 GeV, the size of the
QCD medium is L = 5 fm, the gluon mean free path in
matter is λg = 1 fm, and the parent parton energy is
E0 = p+0 /2 = 100 GeV.

For infinite limits of the k⊥, q⊥ integrations, ignor-
ing the medium recoil effects and assuming static QCD
matter, we checked numerically our analytic formulas in
Eq. (27) - Eq. (29). We found perfect agreement that
validates the numerical integration methods and the an-
alytic results. This can be seen from figure 2. Solid lines
represents the analytic results of Eq. (27) - Eq. (29).
Dashed lines represent numerical results. Our conclu-
sions are valid for both the full in-medium splitting in-
tensity x(dN/dx) and its small-x limit. Note that for
such comparison to be possible we have retained the sub-
leading O(x) term for the g → qq̄ and q → gq processes.
As expected, the deviation between the full in-medium
splittings (red and blue lines) and their small-x approx-
imation (green and black lines) is the largest as x → 1.
For intermediate x ∼ 0.5 the deviation is on the order of
a factor of 2 and changes sign.

In figure 3 we present the comparison of the splitting
intensities without transverse momentum cuts and with-
out parton recoil in the medium (solid red curve) to three
different cut scenarios. In all three cases we use the
same cut on kmax =

√

Q2x(1− x), which is unambigu-
ous, and we choose Q = E0. The three scenarios for the
q⊥ cut are: a) the dashed green curve corresponds to

4
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, (17)

where λq(z) is the scattering length of a quark in the
medium and same comment applies to the quantity
(1/σel) dσ medium

el /d2q⊥ as after Eq. (16). Note that up
to the overall vacuum-like splitting functions and color
factors reflected both in the mean free paths (quark ver-
sus gluon) and the corrections relevant beyond the small-
x approximation, the structure of the answers is very
similar. The symmetry of g → gg, g → qq̄ splitting ker-
nels under x → 1− x is most easily verified explicitly by
realizing that the parton scattering cross section in the
medium is invariant under q⊥ → −q⊥.

The basic features of the medium-induced parton split-
ting kernels are:

• In QCD, for parent quark they factorize from the
hard scattering cross section up to a standard inte-
gral convolution [40]. For parent gluons non-trivial
spin correlation are present analogous to the vac-
uum case [49].

• They are proportional to their vacuum Altarelli-
Parisi splitting functions [48].

• The in-medium splittings are gauge-invariant, as
they should be, since the underlying jet production
process itself is gauge-invariant [40].

• The splitting kernels depend on the properties of
the QCD matter and vanish when the size or den-
sity of the medium vanish. The functions derived
here are only valid for final-state interactions [41].

It is instructive to verify that in the small-x limit only
two of the four medium-induced splitting intensities sur-
vive and this allows for the standard energy loss inter-

pretation of jet quenching:
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In this limit the interference structure for all medium-
induced splitting intensities is the same. Furthermore, in
the small-x limit the last two splittings are suppressed
(O(x)) relative to the first two. We keep the first correc-
tion for numerical comparison only. The color structure
for the in-medium interactions also simplifies in this limit
and is determined by the flavor of the small-x parton in
the final state. Specifically, the first two in-medium split-
tings are proportional to 1/λg and the second two are
proportional to 1/λq. In deriving these results, we have
used relation: λq/λg = CA/CF , which follows from the
leading order perturbation theory approximation. As ex-
pected, in the small-x emission limit our results coincide
exactly with the intensity derived (or neglected when the
leading term is 0) in [50].
In section IV we will study numerically the in-medium

splittings derived here with an emphasis on going beyond
the traditional small-x approximation and on including
medium recoil. The remaining part of the current section
is devoted to deriving analytic formulas for the inclusive
splitting intensity x(dN/dx) under certain idealized as-
sumptions. This will, in turn, allow us to obtain fully
analytic formulas that can be used to benchmark the re-

In	  the	  small	  x	  approxima2on	  the	  4	  spliTngs	  reduce	  to	  only	  2,	  
which	  coincide	  with	  the	  results	  derived	  in	  GLV,	  00	  



• Smaller coupling to medium at higher 
energies

• Smaller energy loss

First heavy ion data from LHC well explained by GLV 
2002 prediction!

Larger RAA can be 
explained by:

Vitev, Gyulassy  (2002) 

K. Amadot et al, (2011) 

Vitev, (2005) 

(finite x corrections?)

Tuesday, March 8, 2011

•  GLV	  predic2on	  from	  2002	  describes	  the	  trends	  of	  Alice	  
data	  remarkably	  well	  

•  Vitev,	  Wicks,	  Zhang	  08	  predic2on	  qualita2vely	  agrees	  
with	  new	  CMS	  data	  on	  jet	  shapes	  in	  the	  medium	  

•  Currently	  we	  are	  working	  on	  implemen2ng	  full	  x	  
medium-‐spliTngs	  (need	  beyond	  energy	  loss)	  

	  
	  
	  

Future	  Outlook	  I	  

Vitev,	  Wicks,	  Zhang,	  08	  



•  Angular	  ordering	  is	  a	  well-‐known	  effect	  used	  in	  parton	  showers	  
like	  Pythia	  and	  Herwig	  

•  Using	  SCET	  we	  derived	  1à3(Catani,	  Grazzini	  99)	  spliTngs	  and	  
compared	  to	  cascade	  of	  1à2	  spliTngs	  

•  Angular	  ordering	  can	  be	  viewed	  as	  a	  prac2cal	  prescrip2on	  to	  
improve	  the	  precision	  of	  parton	  shower	  	  

•  Similar	  calcula2on	  in	  the	  medium	  using	  SCETG	  is	  coming	  soon	  	  
(Fickinger,	  G.O.,	  Vitev)	  

	  
	  
	  

Future	  Outlook	  II	  
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Conclusions	  
•  We	  constructed	  effec2ve	  theory	  applicable	  for	  jets(quark	  

and	  gluon)	  in	  the	  medium	  
•  We	  derived	  all	  medium-‐induced	  kernels	  beyond	  the	  

small	  x	  approxima2on	  
•  We	  derived	  the	  factoriza2on	  of	  spliTng	  from	  the	  hard	  

produc2on	  
•  We	  explicitly	  checked	  the	  gauge	  invariance	  of	  jet	  

broadening	  and	  radia2ve	  energy	  loss	  
•  We	  showed	  how	  phase-‐space	  cuts	  and	  nuclear	  recoil	  can	  

be	  incorporated	  
•  These	  advances	  put	  jet	  quenching	  phenomenology	  on	  

stronger	  grounds	  and	  will	  lead	  to	  higher	  accuracy	  of	  
theore2cal	  predic2ons	  


