Fourth order corrections to the MV model, multiplicity distributions and KNO scaling

Elena Petreska

Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York, NY 10010, USA; The Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

Introduction

Color Glass Condensate theory for the phenomenology of relativistic high energy collisions:

The nucleus is represented as:
Configuration of large-x sources + Small-x components:
that move ultrarelativistically
Gluon Color Field

McLerran-Venugopalan model ⇔ Gaussian distribution of sources

S_{MV} = \int d^2x \frac{\delta^2 \rho^2}{2d^2} \rho^2 \sim \frac{g^2 A}{\pi R^2}

Valid for a large nucleus:
Mass number \(A^{1/3} \to \infty \)

What are the corrections for a proton?

We derive the fourth order corrections ⇔ Quartic action:

Quartic action:

The negative binomial distribution has been theoretically reproduced with a Gaussian MV action.

How do the corrections change the parameter \(k \)?

- \(\beta > 0 \) makes \(k \) bigger
- To preserve KNO scaling, \(k \) has to be small

⇒ KNO scaling constrains \(\beta \) i.e. the corrections to the MV model

Where does the modification come from?

Quartic action:

\(N(r) = \frac{Q_r^2}{4} \log \frac{1}{rA} - \beta Q_r^2 \log \frac{1}{rA} \), \((r^2 Q_r^2 < 1) \)

\(\beta \equiv \frac{C_2^2}{6 \pi^2 \zeta_3} \left[\int_{-1}^{\infty} dz z^2 \right] \sim A^{-2/3} \)

For a proton:

The quartic action result overlaps with the MV model.

For a nucleus with \(A = 100 \):

The quartic action result overlaps with the MV model.

⇒ The \(\gamma \) modification should vanish for a large nucleus.

LHC observed that multiplicities in the central region of proton-proton collisions follow a negative binomial distribution (NBD) and that they exhibit Koba-Nielsen-Olesen (KNO) scaling.

NBD:

\[P(n) = \frac{n^\beta}{\Gamma(n+k) \sum_k (n+k)^{n+k}} \]

\(\hat{n} \) Mean multiplicity
\(k \) Fluctuation parameter

KNO scaling:

\[\hat{n} P(n) \equiv \Psi(z) \]

\(z \equiv \frac{1}{k} \)

NBD leads to KNO scaling for \(k \) constant and \(k \ll \hat{n} \)

Summary

- We derive corrections to the MV model up to fourth order in the density of color charges \(\rho^4 \);
- \(\rho^4 \) operator may explain the AAMQS model;
- KNO scaling constrains the deviation of the small-x effective action from a Gaussian.

References

Acknowledgments

We gratefully acknowledge support by the Graduate School and University Center, City University of New York, through the Doctoral Student Research Grant Program, Competition Number 7