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Properties of energy loss

I. What did we know about energy loss?

RHIC results



Energy loss is not fractional

• a form ∆E ∼ zE is not supported by the data
→ study of RAA for different assumed functional forms for energy loss probability
T. R., Phys. Rev. C 74 (2006) 034906
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• leads to decreasing RAA for higher PT — not seen at either RHIC or LHC

• side note: ∆E ∼ zE works fine with power law parton spectrum instead of pQCD
→ power law is a very bad approximation



Energy loss is not incoherent

• a form ∆E ∼ L is not supported by the data
→ studies of RAA(φ) embedding elastic or parametric models in hydrodynamics
T. R., Phys. Rev. C 76 (2007) 064905; J. Auvinen, K. J. Eskola, H. Holopainen and T. R., Phys. Rev. C 82 (2010) 051901
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• systematic uncertainty on Sin
out due to choice of hydro: factor two (!)

→ ∆E ∼ L fails by factor 6, elastic component of ∆E < 10%

• side note: RAA(φ) works fine as long as transverse hydro expansion is neglected
→ Bjorken cylinder is a very bad approximation



Energy largely remains perturbative

• substantial energy dissipation into non-perturbative dof is not supported by data
→ studies of away side IAA using energy loss and shower modelling
T. R. and K. J. Eskola, Phys. Rev. C 84 (2011) 054913, T. R., Phys. Rev. C 84 (2011) 067902
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• medium-induced radiation is experimentally observed
→ constrains elastic contribution from below to ∼ 10%



Constraints Summary

• summary analysis (T. R., Phys. Rev. C 85 (2012) 044903)
→ look at the full systematics of energy loss models and hydrodynamics

• assuming the best choice of hydro model for each parton-medium interaction model:
(all models tuned to describe RAA in central 200 AGeV AuAu collisions)

• ’RHIC constraints matrix’
→ has a hydrodynamical modelling dimension which is projected out here!

RRHIC
AA (φ) RLHC

AA (PT ) IRHIC
AA ILHC

AA ALHC
J ALHC

J (E)
elastic fails! ? fails! ? ? ?
ASW works ? marginal ? N/A N/A
AdS works ? marginal ? N/A N/A
YaJEM fails ? fails ? ? ?
YaJEM-D works ? marginal ? ? ?
YaJEM-DE works ? works ? ? ?



Properties of energy loss

II. What did we expect to see at LHC?

pre- and some postdictions



Longitudinal shower structure

• in vacuum shower
→ splitting kernels Pi→jk(z) with z = Edaughter/Eparent are scale-invariant

→ fragmentation functions D(z) are self-similar, do not strongly depend on energy
→ logarithmic corrections due to the running of αs

• if ∆E ∼ E, then this could be cast into P ′

i→jk(z) and would yield D′(z) as MMFF
→ we know that is not true
→ instead, the MMFF is changed at a fixed energy ∼ few T , not at any fixed z
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Longitudinal shower structure

• a real experiment has trigger bias (jet finding bias)
→ for instance jet-h correlations by STAR
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now this is flat!

• ’unmodified’, rate suppressed ’FF’ above 2-3 GeV, modifications below
→ jets become different at the thermal scale

How does that work for transverse structure?



Transverse shower structure

• Gaussian width of recoil peak in STAR jet-h correlations
→ significant deviations from vacuum below 2-3 GeV
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• this implies almost unchanged jet shapes above 4 GeV
→ note that the Gaussian width is a very sensitive observable!

T. R., Phys. Rev. C80 (2009) 044904.



Physics picture

→ medium alters hard parton kinematics slightly
→ medium-induced soft gluon emission
→ medium alters soft gluon kinematics a lot, soft gluon thermalizes

• energy flow to large angles R ≫ 0.6, hydro degrees of freedom relevant
→ not picked up by jet finders, mechanism of jet suppression

• probes medium physics, not jet physics
→ largely independent of specific shower-medium interaction assumptions

• not an issue for gluons with pT ∼ few T
→ more difficult to change their kinematics

• now denoted ’frequency collimation’ J. Casalderrey-Solana et al., J. Phys. G G 38 (2011) 035006

→ not novel, observed already in 2009, requires explicit kinematics in models
T. R., Phys. Rev. C 80 (2009) 044904.

Universal mechanism: gluons with pT ∼ T are effectively out of cone



LHC jets

III. Does this work for jet observables?

comparison with LHC jet data



LHC jets

• dijet imbalance ratio as function of Ejet as measured by CMS
(YaJEM-DE: RHIC constrained scenario, YaJEM-E: only elastic energy loss)
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⇒ yes, this works just fine over the whole energy range

• probes medium-induced widening vs. kinematical collimation, gluon vs. quark jets
→ not as constraining as Gaussian width in jet-h correlations



LHC jets

• reproduces weak dependence of AJ on R as observed by ATLAS
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• also matches with ATLAS Rjets
CP ≈ 0.5 in the 120+ momentum region

• has ’unmodified’ fragmentation pattern above ∼ 3 GeV

• more comparison underway



Constraints Summary

• assuming the best choice of hydro model for each parton-medium interaction model:
(all models tuned to describe RAA in central 200 AGeV AuAu collisions)

• ’LHC constraints matrix’

RRHIC
AA (φ) RLHC

AA (PT ) IRHIC
AA ILHC

AA ALHC
J ALHC

J (E)
elastic fails! works fails! fails works fails
ASW works fails marginal works N/A N/A
AdS works fails! marginal works N/A N/A
YaJEM fails fails fails fails works works
YaJEM-D works works marginal marginal works works
YaJEM-DE works works works works works works

• so far, novel LHC constraints come from RAA rather than jet measurements



Conclusions

• single hadrons, h-h, γ-h and jet-h correlations are powerful tools for jet physics
→ at least as powerful as reconstructed jets (but computationally cheaper)

• LHC jet physics re-discovers properties of showers described in different words
→ take a good look at STAR jet-h correlations — differential picture of the shower

• jet quenching is ’radiative energy loss ++’
→ a small, ∼ 10% component of direct energy dissipation into the medium
→ there is no sign of AdS-like behaviour so far

• detailed modelling and systematics matters!
→ with power law spectra and Bjorken cylinders, we would have missed all this

Time to shift from ’new ideas’ to systematic, quantitative multi-observable modelling!



Open questions

• How does energy flow into the medium?
→ can we measure the hadrochemistry of correlations in the 2-3 GeV region?
→ does energy dissipated into the medium flow, i.e. do we see harmonics?

• What happens with heavy quarks?
→ do they become ’light’ at PT ≫ Mq?
→ how does the secondary hadron spectrum in a quenched c-quark jet look like?

• Why is it so hard to get v2 at high PT right?
→ can we measure RP dependence of other observables?
→ can we try to fit hydro modelling to this constraint?

• Do jets ’image’ early time granularity?
→ can we measure jet vs. the ǫ3 event plane?


