

- longitudinal momentum distribution of jets
- transverse momentum distribution of jets
- LHC JET OBSERVABLES
- CONCLUSIONS

PROPERTIES OF ENERGY LOSS

I. What did we know about energy loss?

RHIC results

ENERGY LOSS IS NOT FRACTIONAL

- \bullet a form $\Delta E \sim zE$ is not supported by the data
- \rightarrow study of R_{AA} for different assumed functional forms for energy loss probability
- T. R., Phys. Rev. C 74 (2006) 034906

- leads to decreasing R_{AA} for higher P_T not seen at either RHIC or LHC
- side note: $\Delta E \sim zE$ works fine with power law parton spectrum instead of pQCD \rightarrow power law is a very bad approximation

ENERGY LOSS IS NOT INCOHERENT

- a form $\Delta E \sim L$ is *not* supported by the data
- \rightarrow studies of $R_{AA}(\phi)$ embedding elastic or parametric models in hydrodynamics
- T. R., Phys. Rev. C 76 (2007) 064905; J. Auvinen, K. J. Eskola, H. Holopainen and T. R., Phys. Rev. C 82 (2010) 051901

AuAu 200 AGeV, 40 - 50 %

• systematic uncertainty on S_{out}^{in} due to choice of hydro: factor two (!) $\rightarrow \Delta E \sim L$ fails by factor 6, elastic component of $\Delta E < 10\%$

• side note: $R_{AA}(\phi)$ works fine as long as transverse hydro expansion is neglected \rightarrow Bjorken cylinder is a very bad approximation

ENERGY LARGELY REMAINS PERTURBATIVE

• substantial energy dissipation into non-perturbative dof is *not* supported by data \rightarrow studies of away side I_{AA} using energy loss and shower modelling

T. R. and K. J. Eskola, Phys. Rev. C 84 (2011) 054913, T. R., Phys. Rev. C 84 (2011) 067902

• medium-induced radiation is experimentally observed \rightarrow constrains elastic contribution from below to $\sim 10\%$

CONSTRAINTS SUMMARY

- summary analysis (T. R., Phys. Rev. C 85 (2012) 044903)
- \rightarrow look at the full systematics of energy loss models and hydrodynamics
- assuming the best choice of hydro model for each parton-medium interaction model: (all models tuned to describe R_{AA} in central 200 AGeV AuAu collisions)
- 'RHIC constraints matrix'
- \rightarrow has a hydrodynamical modelling dimension which is projected out here!

	$R_{AA}^{RHIC}(\phi)$	$R_{AA}^{LHC}(P_T)$	I_{AA}^{RHIC}	I_{AA}^{LHC}	A_J^{LHC}	$A_J^{LHC}(E)$
elastic	fails!	?	fails!	?	?	?
ASW	works	?	marginal	?	N/A	N/A
AdS	works	?	marginal	?	N/A	N/A
YaJEM	fails	?	fails	?	?	?
YaJEM-D	works	?	marginal	?	?	?
YaJEM-DE	works	?	works	?	?	?

PROPERTIES OF ENERGY LOSS

II. What did we expect to see at LHC?

pre- and some postdictions

LONGITUDINAL SHOWER STRUCTURE

- in vacuum shower
- \rightarrow splitting kernels $P_{i \rightarrow jk}(z)$ with $z = E_{daughter}/E_{parent}$ are scale-invariant
- \rightarrow fragmentation functions D(z) are self-similar, do not strongly depend on energy
- \rightarrow logarithmic corrections due to the running of α_s
- if $\Delta E \sim E$, then this could be cast into $P'_{i \to jk}(z)$ and would yield D'(z) as MMFF \to we know that is not true
- \rightarrow instead, the MMFF is changed at a fixed energy \sim few T, not at any fixed z

LONGITUDINAL SHOWER STRUCTURE

- a real experiment has trigger bias (jet finding bias)
- \rightarrow for instance jet-h correlations by STAR

• 'unmodified', rate suppressed 'FF' above 2-3 GeV, modifications below \rightarrow jets become different at the thermal scale

How does that work for transverse structure?

TRANSVERSE SHOWER STRUCTURE

• Gaussian width of recoil peak in STAR jet-h correlations \rightarrow significant deviations from vacuum below 2-3 GeV

this implies almost unchanged jet shapes above 4 GeV
→ note that the Gaussian width is a very sensitive observable!

T. R., Phys. Rev. C80 (2009) 044904.

PHYSICS PICTURE

- \rightarrow medium alters hard parton kinematics slightly
- \rightarrow medium-induced soft gluon emission
- \rightarrow medium alters soft gluon kinematics a lot, soft gluon thermalizes
- \bullet energy flow to large angles $R\gg 0.6,$ hydro degrees of freedom relevant \to not picked up by jet finders, mechanism of jet suppression
- probes medium physics, not jet physics
- \rightarrow largely independent of specific shower-medium interaction assumptions
- \bullet not an issue for gluons with $p_T \sim {\rm few}~T$
- \rightarrow more difficult to change their kinematics
- now denoted 'frequency collimation' J. Casalderrey-Solana *et al.*, J. Phys. G G **38** (2011) 035006 \rightarrow not novel, observed already in 2009, requires explicit kinematics in models
- T. R., Phys. Rev. C 80 (2009) 044904.

Universal mechanism: gluons with $p_T \sim T$ are effectively out of cone

III. Does this work for jet observables?

comparison with LHC jet data

• dijet imbalance ratio as function of E_{jet} as measured by CMS (YaJEM-DE: RHIC constrained scenario, YaJEM-E: only elastic energy loss)

0-20% 2.76 ATeV PbPb

 \Rightarrow yes, this works just fine over the whole energy range

• probes medium-induced widening vs. kinematical collimation, gluon vs. quark jets \rightarrow not as constraining as Gaussian width in jet-h correlations

 \bullet reproduces weak dependence of A_J on R as observed by ATLAS

2.76 ATeV PbPb, 0-5% centrality

- \bullet also matches with ATLAS $R_{CP}^{jets} \approx 0.5$ in the 120+ momentum region
- \bullet has 'unmodified' fragmentation pattern above $\sim 3~{\rm GeV}$
- more comparison underway

CONSTRAINTS SUMMARY

- assuming the best choice of hydro model for each parton-medium interaction model: (all models tuned to describe R_{AA} in central 200 AGeV AuAu collisions)
- 'LHC constraints matrix'

	$R_{AA}^{RHIC}(\phi)$	$R_{AA}^{LHC}(P_T)$	I_{AA}^{RHIC}	I_{AA}^{LHC}	A_J^{LHC}	$A_J^{LHC}(E)$
elastic	fails!	works	fails!	fails	works	fails
ASW	works	fails	marginal	works	N/A	N/A
AdS	works	fails!	marginal	works	N/A	N/A
YaJEM	fails	fails	fails	fails	works	works
YaJEM-D	works	works	marginal	marginal	works	works
YaJEM-DE	works	works	works	works	works	works

• so far, novel LHC constraints come from R_{AA} rather than jet measurements

CONCLUSIONS

• single hadrons, h-h, γ -h and jet-h correlations are powerful tools for jet physics \rightarrow at least as powerful as reconstructed jets (but computationally cheaper)

- LHC jet physics re-discovers properties of showers described in different words \rightarrow take a good look at STAR jet-h correlations differential picture of the shower
- \bullet jet quenching is 'radiative energy loss ++'
- \rightarrow a small, $\sim 10\%$ component of direct energy dissipation into the medium
- \rightarrow there is no sign of AdS-like behaviour so far
- detailed modelling and systematics matters!
- \rightarrow with power law spectra and Bjorken cylinders, we would have missed all this

Time to shift from 'new ideas' to systematic, quantitative multi-observable modelling!

OPEN QUESTIONS

- How does energy flow into the medium?
- \rightarrow can we measure the hadrochemistry of correlations in the 2-3 GeV region?
- \rightarrow does energy dissipated into the medium flow, i.e. do we see harmonics?
- What happens with heavy quarks?
- \rightarrow do they become 'light' at $P_T \gg M_q$?
- \rightarrow how does the secondary hadron spectrum in a quenched c-quark jet look like?
- Why is it so hard to get v_2 at high P_T right?
- \rightarrow can we measure RP dependence of other observables?
- \rightarrow can we try to fit hydro modelling to this constraint?
- Do jets 'image' early time granularity?
- \rightarrow can we measure jet vs. the ϵ_3 event plane?