

A New Mechanism for Generating a Single Transverse Spin Asymmetry

Matthew D. Sievert with Yuri V. Kovchegov

The Ohio State University

August 17, 2012 Paper appearing this month in Phys. Rev. D arXiv: 1201.5890

New Mechanism for STSA

▲ 注 → 注 → 注 = つへへ Aug. 17, 2012 1/12

The Single Transverse Spin Asymmetry (STSA)

$$A_{N} \equiv \frac{d(\Delta\sigma)}{2 \, d\sigma_{unp}} \equiv \frac{d\sigma^{\uparrow}(\mathbf{k}) - d\sigma^{\uparrow}(-\mathbf{k})}{d\sigma^{\uparrow}(\mathbf{k}) + d\sigma^{\uparrow}(-\mathbf{k})} = \frac{d\sigma^{\uparrow}(\mathbf{k}) - d\sigma^{\downarrow}(\mathbf{k})}{d\sigma^{\uparrow}(\mathbf{k}) + d\sigma^{\downarrow}(\mathbf{k})}$$

• Transversely polarized hadronic collision $A^{\uparrow} + B \rightarrow C + X$.

- Describes the left/right asymmetry of produced hadrons C.
- *T***-odd** correlation $A_N \sim (\vec{S} \times \vec{p}) \cdot \vec{k}$.
- Couples hadron spin to orbital momentum distribution.

Selected STSA Data

- <u>Fermilab</u>: Large A_N (30-40%) for forward production (large x_F).
- STAR: Nonmonotonic k_T dependence for forward production.
- Consistent with zero for mid, negative rapidities.
- Contradicts naive pQCD: A_N should be energy suppressed.

제 글 에 제 글 에 크네크

Potential Sources of STSA

STSA originates from a nontrivial *T*-odd mechanism.

3 possible sources of STSA within factorization framework:

Asymmetric PDF of polarized hadron. (Sivers effect)

- Asymmetric partonic scattering. (higher-twist mechanisms)
- Asymmetric fragmentation of polarized parton. (Collins effect)

Color-Glass Condensate and Saturation

- High energy, heavy nuclei: gluon density saturates to classical maximum.
- Saturation momentum Q_s: fixes size of coherent color domains.
- Small-*k*_T gluons are screened by average color-neutral density.
- Q_s is a natural IR cutoff for k_T : perturbative high-energy dynamics.

Wilson Lines and Dipole Degrees of Freedom

- High energy kinematics: "recoilless" eikonal propagation.
- Eikonal interactions with background field = Wilson lines.
- Wilson lines posses "crossing symmetry": quark in \mathcal{M}^* = antiquark in \mathcal{M} .
- Express $d\sigma$ in terms of dipole scattering amplitudes D_{xy} .

A Proxy for $p^{\uparrow}A$ Scattering

- Simple Wilson line: spin-independent (no STSA).
- Interaction with recoil: spin-dependent but $\frac{1}{s}$ suppressed.

Lowest-order source of spin dependence:

- Simplest spin-dependence: $\mathcal{O}(\alpha_s)$ non-eikonal splitting $q \rightarrow q + G$.
- Splitting occurs before or after interaction with target. (Splitting during interaction is $\frac{1}{s}$ suppressed).

《曰》《圖》《曰》《曰》 되는

Leading Spin Dependence at High Energy

- Wave function $\Phi_{\chi} = \Phi_{unp} + \chi \Phi_{pol}$ links spin dependence with parity.
- Interaction *I* = *I*_{symm} + *I*_{anti} can be decomposed by time reversal symmetry: k → -k or quark ↔ antiquark.

Aug. 17, 2012 8 / 12

The Odderon Drives the Asymmetry

• STSA generated by spin-dependent splitting Φ_{pol} and asymmetric scattering \mathcal{I}_{anti} .

$$\begin{aligned} d(\Delta\sigma) \sim \mathcal{F}.\mathcal{T}.[\Phi_{pol} \otimes \mathcal{I}_{anti}] & S_{xy} = \frac{1}{2} \left(D_{xy} + D_{yx} \right) \\ O_{xy} = \frac{1}{2i} \left(D_{xy} - D_{yx} \right) \\ \mathcal{I}_{anti} = i \left(O_{zy} + O_{uw} - O_{zx} S_{xw} - O_{ux} S_{xy} - S_{zx} O_{xw} - S_{ux} O_{xy} \right) \end{aligned}$$

- Asymmetric scattering driven by *T*-odd, *C*-odd "odderon" interaction O_{xy}.
- Sensitive to dipole orientation; couples to gradients of density.

물 지 문 지 모님

Quark, Gluon, and Prompt Photon Production

• Terms with only O_{xy} average out to zero after integration.

(q,G,γ) production: same wave function, different interactions

$$\mathcal{I}_{anti}^{(q)} = i(O_{zy} + O_{uw} - O_{zx}S_{xw} - O_{ux}S_{xy} - S_{zx}O_{xw} - S_{ux}O_{xy}) \mathcal{I}_{anti}^{(G)} = i(O_{uw} - S_{xz}O_{zw} - O_{xz}S_{zw} - S_{uy}O_{yx} - O_{uy}S_{yx}) \mathcal{I}_{anti}^{(\gamma)} = i(O_{uw} - O_{xw} - O_{ux})$$

- Nonzero asymmetry arises from interference of *T*, *C*-even/odd scattering before/after splitting.
- Our mechanism does not contribute to STSA for prompt photons.

New Mechanism for STSA

Approximating the Integrals (Quark Production)

- A_N increases with increasing x_F (until $x_F \approx 1$).
- A_N is non-monotonic in k_T (possesses <u>nodes</u>).
- A_N peaks at some average saturation scale $\langle Q_s \rangle$.
- $A_N \sim \frac{1}{k_T^9}$ at large k_T (higher-twist behavior).
- $A_N \sim A^{-7/6}$: suppressed for central collisions / heavy nuclei.
- $A_N \sim |\nabla T|^2$: sensitive to edge effects (cutoff dependence).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Summary: A New Mechanism for STSA

- In the high-energy/CGC framework, the leading STSA occurs through a *T*, *C*-odd scattering mechanism (Odderon).
- Only the interference of odd + even scattering survives event averaging.
 - \rightarrow Does not contribute to prompt photon STSA.
- Increases with x_F and innately non-monotonic (nodes).
- Couples to density gradients; dominated by peripheral collisions.
- Complements other nonperturbative mechanisms: Sivers, Collins
- May provide a missing piece of the STSA puzzle.

Extra Slides: New $\sqrt{s} = 500 GeV$ Data

STAR Run 11 preliminary data

- Still increases with x_F.
- p_T dependence is almost flat...?

Aug. 17, 2012 13 / 12

Extra Slides: Centrality Dependence

- Larger A smoothes out density gradients.
- For $k_T \sim Q_s$, $A_N \sim A^{-7/6}$
- Strongest for peripheral collisions; suppressed at central collisions.

M. Sievert (OSU)

New Mechanism for STSA

Aug. 17, 2012 14 / 12

Extra Slides: BHS Mechanism

- Brodsky, Hwang, and Schmidt (Phys. Lett. B, 2002): "Spectator interactions" with on-shell intermediate state can produce STSA.
- High-energy analog: *T*-odd wave function + *T*, *C*-even interaction
- Can be of the same order as odderon-driven STSA.