Measurement of elliptic and higher-order harmonics at 2.76 TeV Pb+Pb collisions with the ATLAS detector.

Why azimuthal anisotropy in AA is interesting?

- Signature of strongly interacting QGP
- Sensitive to
 - Initial shape of the interaction region (v₂)
 - Initial spatial fluctuations of nucleons (higher orders)
 Related to ridge, Mach cone.
- Mechanism of particle production
 - Low p_T (< ~2GeV): hydro expansion (perfect liquid)
 (Nucl. Phys. A Volume 757)
 - Medium p_T (~2-6 GeV): coalescence models
 (Nucl. Phys. A Volume 757, D. Molnar and S. Voloshin, nucl-th/0302014)
 - High p_T : constrain on jet quenching models

Azimuthal anisotropy in heavy ion collisions

Pressure gradients lead to azimuthal anisotropy

$$\frac{dN}{d\left(\phi - \Psi_{n}\right)} = N_{0} \left(1 + 2v_{1}\cos\left(\phi - \Psi_{1}\right) + 2v_{2}\cos\left(2\left(\phi - \Psi_{2}\right)\right) + 2v_{3}\cos\left(3\left(\phi - \Psi_{3}\right)\right) + \dots\right)$$

$$\frac{dN}{d\left(\phi - \Psi_{n}\right)} = N_{0} \left(1 + 2v_{1}\cos\left(\phi - \Psi_{1}\right) + 2v_{2}\cos\left(2\left(\phi - \Psi_{2}\right)\right) + 2v_{3}\cos\left(3\left(\phi - \Psi_{3}\right)\right) + \dots\right)$$

$$\frac{dN}{d\left(\phi - \Psi_{n}\right)} = N_{0} \left(1 + 2v_{1}\cos\left(\phi - \Psi_{1}\right) + 2v_{2}\cos\left(2\left(\phi - \Psi_{2}\right)\right) + 2v_{3}\cos\left(3\left(\phi - \Psi_{3}\right)\right) + \dots\right)$$

$$\frac{dN}{d\left(\phi - \Psi_{n}\right)} = N_{0} \left(1 + 2v_{1}\cos\left(\phi - \Psi_{1}\right) + 2v_{2}\cos\left(2\left(\phi - \Psi_{2}\right)\right) + 2v_{3}\cos\left(3\left(\phi - \Psi_{3}\right)\right) + \dots\right)$$

$$\frac{dN}{d\left(\phi - \Psi_{n}\right)} = N_{0} \left(1 + 2v_{1}\cos\left(\phi - \Psi_{1}\right) + 2v_{2}\cos\left(2\left(\phi - \Psi_{2}\right)\right) + 2v_{3}\cos\left(3\left(\phi - \Psi_{3}\right)\right) + \dots\right)$$

$$\frac{dN}{d\left(\phi - \Psi_{n}\right)} = N_{0} \left(1 + 2v_{1}\cos\left(\phi - \Psi_{1}\right) + 2v_{2}\cos\left(2\left(\phi - \Psi_{2}\right)\right) + 2v_{3}\cos\left(3\left(\phi - \Psi_{3}\right)\right) + \dots\right)$$

Fourier harmonics
$$v_n = \langle \cos(n(\Phi - \Psi_n)) \rangle$$

ATLAS detector

• Energy deposited in entire FCal is used for centrality determination

• Event plane is measured based FCal on energy deposition in the first sampling layer of FCal

• Fourier harmonics are reconstructed in inner detector from charged particle tracks:

- $p_T > 0.5 \text{ GeV}$
- · |η|<2.5

ATLAS detector

- Energy deposited in entire FCal is used for centrality determination
- Event plane is measured based on energy deposition in the first sampling layer of FCal
- Fourier harmonics are reconstructed in inner detector from charged particle tracks:
 - $p_T > 0.5 \text{ GeV}$
 - |η|<2.5

Event plane determination

• Reaction plane (Ψ^{RP}) is approximated by event plane (Ψ_n^{EP}) measured in FCal:

$$\Psi_n^{EP} = \frac{1}{n} \tan^{-1} \frac{\sum_{i} E_{T,i}^{tower} w_i \sin(n\phi_i)}{\sum_{i} E_{T,i}^{tower} w_i \cos(n\phi_i)}$$

- The event plane resolution correction factor R is obtained using two-sub event and various treesubevent method
- Significant resolution for harmonics n=2 6
- Resolution corrected harmonics:

$$v_n = \langle \cos(n(\Phi - \Psi_n)) \rangle / R$$

p_T dependence of the v₂ of charged particles

- All centrality intervals shows:
 - Rapid rise in $v_2(p_T)$ up to $p_T \sim 3 \text{ GeV}$
 - Decrease out to 7-8 GeV
 - Weak p₊-dependence above 9-10 GeV
- The strongest elliptic flow at LHC is observed in centralities 30-50%

Comparison with ALICE and RHIC experiments

• All data sets are quite consistent for both low and high $p_{\scriptscriptstyle T}$

Pseudorapidity dependence of the v₂

- No substantial η dependence for any p_T or centrality interval is observed
- Different than PHOBOS measurements at RHIC in which v_2 decreases by ~30% within the same η range (PHOBOS Phys. Rev. C72 (2005) 051901)

Higher order flow harmonics

- The p_T-dependence of v₂-v₆ for several centrality selections
- Similar p_T-dependence for all harmonics
- v_n generally decreases for larger n, except in the most central events:
 - v₃ dominates in p_T range~2-7 GeV
 - $-v_4>v_2$ in p_T range ~3-5 GeV

Higher order harmonics scaling

- Hydrodynamics model suggests scaling v₄~v₂²
 (PHENIX PRL 105, 062301 (2010))
- The p_T-dependence of the v_n^{1/n}/v₂^{1/2} (n=3-6) ratio for several centrality selections
- Weak p_T-dependence of the ratio except 5% most central events
- Ratio for n=3
 systematically lower
 than for n=4, 5

The two-particle correlation function: $C(\Delta\phi,\Delta\eta) = \frac{N_s(\Delta\phi,\Delta\eta)}{N_m(\Delta\phi,\Delta\eta)}$

 N_s – same event pairs N_m – mixed event pairs

The two-particle correlation function: $C(\Delta \phi, \Delta \eta) = \frac{N_s(\Delta \phi, \Delta \eta)}{N_m(\Delta \phi, \Delta \eta)}$

 N_s – same event pairs N_m – mixed event pairs

Projected onto $\Delta \phi$

1D correlation function

$$\frac{dN}{d\Delta\phi} \propto 1 + 2\sum_{n} v_{n,n} \cos(n\Delta\phi)$$

The two-particle correlation function: $C(\Delta \phi, \Delta \eta) = \frac{N_s(\Delta \phi, \Delta \eta)}{N_m(\Delta \phi, \Delta \eta)}$

N_s – same event pairs N_m - mixed event pairs

Projected onto Δφ

1D correlation function

$$\frac{dN}{d\Delta\phi} \propto 1 + 2\sum_{n} v_{n,n} \cos(n\Delta\phi)$$

v_{n,n} are calculated via Discrete Fourier

Transform (DFT):
$$\sum_{n,n} \cos(n\Delta\phi_m)C(\Delta\phi_m)$$
$$v_{n,n} = \langle \cos(n\Delta\phi) \rangle = \frac{\sum_{m} \cos(n\Delta\phi_m)C(\Delta\phi_m)}{\sum_{m} C(\Delta\phi_m)}$$

The two-particle correlation function: $C(\Delta \phi, \Delta \eta) = \frac{N_s(\Delta \phi, \Delta \eta)}{N_m(\Delta \phi, \Delta \eta)}$

N_s – same event pairs N_m - mixed event pairs

Projected onto Δφ

1D correlation function

$$\frac{dN}{d\Delta\phi} \propto 1 + 2\sum_{n} v_{n,n} \cos(n\Delta\phi)$$

v_{n,n} are calculated via Discrete Fourier

Transform (DFT):
$$\sum_{m} \cos(n\Delta\phi_m) C(\Delta\phi_m)$$
$$v_{n,n} = <\cos(n\Delta\phi) > = \frac{\sum_{m} \cos(n\Delta\phi_m) C(\Delta\phi_m)}{\sum_{m} C(\Delta\phi_m)}$$

It is expected that for flow modulations:

$$v_{n,n}(p_T^a,p_T^b) = v_n(p_T^a)v_n(p_T^b)$$

And for "fixed-pT" correlations:

$$v_n = \sqrt{v_{n,n}}$$

Two particle correlation vs EP results

Good agreement between both methods in the selected kinematical range (p_{τ} 1-3 GeV, 2< $|\eta|$ <5)

Two particle correlation vs EP results

$$C(\Delta \Phi) = b^{2PC} (1 + 2v_{1,1}^{2PC} \cos \Delta \Phi + 2\sum_{n=2}^{6} v_n^{EP,a} v_n^{EP,b} \cos n \Delta \Phi)$$

- b^{2PC} average of the correlation function
- v_{1,1}^{2PC} first harmonic from the 2PC analysis

More details on v_1 :

J. Jia talk 15 Aug 11:20 AM Session: Parallel 4A

- Other v_n components measured with the event plane method
- Correlation function reproduced very well

even harmonics contribution

odd harmonics contribution

Summary

- ATLAS measured v_2 and higher order flow harmonics up to v_6 in wide p_T , η and centrality range
- $v_n(p_T)$ shows the same trends
 - rise up to ~3 GeV
 - decrease within 3-8 GeV
 - varies weakly out to 20 GeV
- $v_n(\eta)$ remains approximately constant
- v₃ is dominating in the most central collisions
- v_n 's follow approximate scaling relation $v_n^{1/n} \propto v_2^{1/2}$
- Good agreement between event plane and two particle correlation results for v_n