Measurement of elliptic and higher-order harmonics at 2.76 TeV Pb+Pb collisions with the ATLAS detector.

Dominik Derendarz
for the ATLAS Collaboration
Institute of Nuclear Physics PAN, Kraków, Poland
Why azimuthal anisotropy in AA is interesting?

• **Signature of strongly interacting QGP**

• **Sensitive to**

 – Initial shape of the interaction region (v_2)

 – Initial spatial fluctuations of nucleons (higher orders)

 Related to ridge, Mach cone.

• **Mechanism of particle production**

 – Low p_T (< ~2GeV): hydro expansion (perfect liquid)

 (Nucl. Phys. A Volume 757)

 – Medium p_T (~2-6 GeV): coalescence models

 – High p_T: constrain on jet quenching models
Pressure gradients lead to azimuthal anisotropy

\[
\frac{dN}{d(\phi - \Psi_n)} = N_0 \left(1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos(2(\phi - \Psi_2)) + 2v_3 \cos(3(\phi - \Psi_3)) + \ldots \right)
\]

Directed flow
Elliptic flow
Triangular flow

Fourier harmonics
\[\nu_n = \langle \cos(n(\Phi - \Psi)) \rangle \]
ATLAS detector

Centrality determination

- Energy deposited in entire FCal is used for **centrality determination**
- Event plane is measured based on energy deposition in the first sampling layer of FCal
- Fourier harmonics are reconstructed in inner detector from charged particle tracks:
 - $p_T > 0.5$ GeV
 - $|\eta| < 2.5$
• Energy deposited in entire FCal is used for centrality determination
• Event plane is measured based on energy deposition in the first sampling layer of FCal
• Fourier harmonics are reconstructed in inner detector from charged particle tracks:
 • $p_T > 0.5$ GeV
 • $|\eta| < 2.5$
Event plane determination

- Reaction plane (Ψ_{RP}) is approximated by event plane (Ψ_{n}^{EP}) measured in FCal:

$$\Psi_{n}^{EP} = \frac{1}{n} \tan^{-1} \left(\frac{\sum E_{T,i}^{tower} w_i \sin(n\phi_i)}{\sum E_{T,i}^{tower} w_i \cos(n\phi_i)} \right)$$

- The event plane resolution correction factor R is obtained using two-sub event and various tree-subevent method

- Significant resolution for harmonics $n=2$ – 6

- Resolution corrected harmonics:

$$v_n = \langle \cos(n(\Phi - \Psi_n)) \rangle / R$$
p_T dependence of the v_2 of charged particles

- All centrality intervals shows:
 - Rapid rise in $v_2(p_T)$ up to $p_T \sim 3$ GeV
 - Decrease out to 7-8 GeV
 - Weak p_T-dependence above 9-10 GeV

- The strongest elliptic flow at LHC is observed in centralities 30-50%

Comparison with ALICE and RHIC experiments

- All data sets are quite consistent for both low and high p_T
No substantial η dependence for any p_T or centrality interval is observed.

Different than PHOBOS measurements at RHIC in which v_2 decreases by \sim30% within the same η range (PHOBOS Phys. Rev. C72 (2005) 051901)
Higher order flow harmonics

- The p_T-dependence of v_2-v_6 for several centrality selections

- Similar p_T-dependence for all harmonics

- v_n generally decreases for larger n, except in the most central events:
 - v_3 dominates in p_T range ~ 2-7 GeV
 - $v_4 > v_2$ in p_T range ~ 3-5 GeV
Higher order harmonics scaling

- Hydrodynamics model suggests scaling $v_4 \sim v_2^2$ (PHENIX PRL 105, 062301 (2010))

- The p_T-dependence of the $v_n^{1/n}/v_2^{1/2}$ ($n=3-6$) ratio for several centrality selections

- Weak p_T-dependence of the ratio except 5% most central events

- Ratio for $n=3$ systematically lower than for $n=4, 5$
The two-particle correlation function:

\[C(\Delta \phi, \Delta \eta) = \frac{N_s(\Delta \phi, \Delta \eta)}{N_m(\Delta \phi, \Delta \eta)} \]

- \(N_s \) – same event pairs
- \(N_m \) – mixed event pairs
Two-particle correlation method

The two-particle correlation function: \(C(\Delta \phi, \Delta \eta) = \frac{N_s(\Delta \phi, \Delta \eta)}{N_m(\Delta \phi, \Delta \eta)} \)

- \(N_s \) – same event pairs
- \(N_m \) – mixed event pairs

\[
\frac{dN}{d\Delta \phi} \propto 1 + 2 \sum_n v_{n,n} \cos(n \Delta \phi)
\]

Projected onto \(\Delta \phi \)

1D correlation function
The two-particle correlation function:

\[C(\Delta \phi, \Delta \eta) = \frac{N_s(\Delta \phi, \Delta \eta)}{N_m(\Delta \phi, \Delta \eta)} \]

\[v_{n,n} = \sum_m \cos(n \Delta \phi_m) C(\Delta \phi_m) \]

\[v_{n,n} = \langle \cos(n \Delta \phi) \rangle = \frac{\sum_m \cos(n \Delta \phi_m) C(\Delta \phi_m)}{\sum_m C(\Delta \phi_m)} \]

Projected onto \(\Delta \phi\):

1D correlation function

\[\frac{dN}{d\Delta \phi} \propto 1 + 2 \sum_n v_{n,n} \cos(n \Delta \phi) \]

\(v_{n,n}\) are calculated via Discrete Fourier Transform (DFT):

\(N_s\) – same event pairs
\(N_m\) – mixed event pairs
Two-particle correlation method

The two-particle correlation function:

$$C(\Delta \phi, \Delta \eta) = \frac{N_s(\Delta \phi, \Delta \eta)}{N_m(\Delta \phi, \Delta \eta)}$$

N_s – same event pairs

N_m – mixed event pairs

Projected onto $\Delta \phi$

1D correlation function

$$\frac{dN}{d\Delta \phi} \propto 1 + 2 \sum_n v_{n,n} \cos(n \Delta \phi)$$

$v_{n,n}$ are calculated via Discrete Fourier Transform (DFT):

$$v_{n,n} = \langle \cos(n \Delta \phi) \rangle = \frac{\sum m \cos(n \Delta \phi_m) C(\Delta \phi_m)}{\sum m C(\Delta \phi_m)}$$

It is expected that for flow modulations:

$$v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a) v_n(p_T^b)$$

And for "fixed-pT" correlations:

$$V_n = \sqrt{v_{n,n}}$$
Good agreement between both methods in the selected kinematical range (p_T 1-3 GeV, 2<|η|<5)
Two particle correlation vs EP results

\[C(\Delta \Phi) = b^{2\text{PC}} (1 + 2v_{1,1}^{2\text{PC}} \cos \Delta \Phi + 2 \sum_{n=2}^{6} v_n^{\text{EP},a} v_n^{\text{EP},b} \cos n \Delta \Phi) \]

- \(b^{2\text{PC}} \): average of the correlation function
- \(v_{1,1}^{2\text{PC}} \): first harmonic from the 2PC analysis
- Other \(v_n \) components measured with the event plane method
- Correlation function reproduced very well

More details on \(v_1 \):
J. Jia talk 15 Aug 11:20 AM
Session: Parallel 4A
Summary

- ATLAS measured v_2 and higher order flow harmonics up to v_6 in wide p_T, η and centrality range

- $v_n(p_T)$ shows the same trends
 - rise up to ~ 3 GeV
 - decrease within 3-8 GeV
 - varies weakly out to 20 GeV

- $v_n(\eta)$ remains approximately constant

- v_3 is dominating in the most central collisions

- v_n’s follow approximate scaling relation $v_n^{1/n} \propto v_2^{1/2}$

- Good agreement between event plane and two particle correlation results for v_n