

Institut de recherche sur les lois fondamentales de l'Univers

Elliptic flow of J/ψ at forward rapidity in Pb-Pb collisions at 2.76 TeV with the ALICE experiment

Hongyan Yang¹ for the ALICE Collaboration

¹SPhN/Irfu/CEA, Saclay, France 08/17/2012

13–18 August, QM2012, Washington DC, USA

Physics motivation

- Color screening suppression versus J/ψ (re)generation
- Does J/ψ flow or not flow
 - ⇒ J/ψ production mechanism in heavy-ion collisions
- ALICE setup

Data analysis

J/ψ signal and elliptic flow extraction

Results and discussion

- Differential J/ψ v₂ in 20%-60%
 - Comparison with STAR results and theory calculations
- Differential J/ ψ v_2 : centrality scan
- Centrality dependence of $J/\psi v_2$ with $p_T \ge 1.5$ GeV/c

Summary and conclusions

J/ψ elliptic flow at RHIC

Irfu

At RHIC energy \rightarrow results favor zero or very small v_2

S Irfu

J/ψ elliptic flow at the LHC energies

Y. Liu, N. Xu, P. Zhuang, Nucl. Phys. A834 (2010) 317c

Same authors: P. Zhuang and co., 2012 prediction (priv. comm.)

a significant elliptic flow may be expected at LHC energies due to the significant contribution of (re)generated J/ψ

ALICE experimental setup

J/ψ in Pb-Pb collisions at 2.76 TeV

Event selection

- Unlike sign muon trigger
- Require $|Z_{vtx}| < 10$ cm
- Centrality: from a geometrical Glauber model fit of the VZERO amplitude
 - Centrality bins used for this study [5, 20]%, [20, 40]%, [40, 60]% [60, 90]%, [20, 60]%

J/ψ candidates selection

- J/ψ→ μ⁺μ⁻ with muons measured in the muon spectrometer
 - Opposite-sign dimuons rapidity $2.5 < y^{\mu+\mu-} < 4$
 - Decay daughters:

 muon track with low p_T trigger matching (p_T > 1 GeV/c)
 -4 < η^{μ+/μ-} < -2.5
 170° < θ_{abs} < 178°

J/ψ signal (yield) extraction

- Fit the invariant mass spectrum of opposite sign dimuons
 - Signal
 - Crystal Ball (CB) function
 - Signal shape fixed via the J/ψ production in pp simulation
 i.e. non-Gaussian tail
 - Extended Crystal Ball (CB2) function
 - Signal shape fixed via the reconstructed J/ψ from a MC sample with embedding 1 simulated J/ψ in each real MB Pb-Pb event

i.e. non-Gaussian tails on both sides of the J/ ψ peak

- Background
 - Variable width Gaussian (VWG)
 - 3rd order polynomial (POL3) function
- Fitting range
 - Varies for systematics study

J/ψ elliptic flow analysis methods

- With event plane (by VZERO-A)
 - Standard event plane method (n $\Delta \phi$ method): $\Delta \varphi = \phi \Psi_{EP,2}$
 - $dN^{J/\psi}/d\Delta\varphi = A \times (1 + 2v_2 \cos 2\Delta\varphi)$
 - Invariant mass fit technique: $v_2^{\mu^+\mu^-} = \langle \cos 2(\Delta \varphi) \rangle$
 - $v_2^{\mu^+\mu^-} = (S \times v_2^{sig} + B \times v_2^{bkg})/(S+B)$
 - \rightarrow Finally, correct v_2^{obs} by the event plane resolution σ_{EP}

$$v_2 = v_2^{obs} / \sigma_{EP}$$

Method w/o event plane – a cumulant method

- 2-particle correlation method with detectors with large η gap: dimuon + SPD tracklets + VZERO-A for dimuon v_2
- Combine with *invariant mass fit technique* for extraction of v_2^{sig}
 - Largely limited by statistical uncertainties

N Borghini, P M Dinh, J-Y Ollitrault: PRC63 (2001) 054906, PRC64(2001)054901

Event plane determination from VZERO

ALICE

- VZERO detectors
 - 2 arrays of 32 scintillators on both side of IP: VZERO-A: 2.8 < η < 5.1 VZERO-C: -3.7 < η < -1.8
- Event plane from VZERO-A¹
 second harmonics

S. A. Voloshin, Phys Rev. C58, 1671

• EP flattened (~ 1% fluctuation) and resolution obtained from 3 sub-events method

$$\langle \cos[n(\Psi_2^a - \Psi_r)] \rangle = \sqrt{rac{\langle \cos[n(\Psi_2^a - \Psi_2^b)] \rangle \langle \cos[n(\Psi_2^a - \Psi_2^c)] \rangle}{\langle \cos[n(\Psi_2^b - \Psi_2^c)] \rangle}}$$
 A. M. Poskanzer and

- Event plane resolution in a large centrality bin
 - Estimated by a weighted sum of event plane resolutions using J/ψ yields as weights in its sub-centrality bins

¹VZERO-C was not used due to acceptance overlap with the muon spectrometer ($-4.0 < \eta < -2.5$) to avoid autocorrelation effects

J/ψ elliptic flow extraction

Methods using VZERO-A event plane

6-Δφ method

invariant mass fit technique

2nd order polynomial function used to
describe
$$\langle p_{\rm T} \rangle$$
 and v_2 of the background
 $v_2^{\mu^+\mu^-} = (S \times v_2^{sig} + B \times v_2^{bkg})/(S+B)$

2 ≤ p_T < 4 GeV/c hint of non-zero v₂ with significance ~ 2.2 sigma

$J/\psi v_2$ in centrality 20%-60%

2 ≤ p_T < 4 GeV/c: contrary to STAR measurement hint of non-zero v₂ with significance ~ 2.2 sigma

$J/\psi v_2$ in centrality 20%-60%

 versus calculations from parton transport models: in agreement within errors

6-Δφ method vs. inv. mass fit technique

- Agreement achieved between two methods
 - Invariant mass fit technique is used for J/ψ v₂ in finer centrality bins (5%-20%, 20%-40%, 40%-60% and 60%-90%)

S Irfu

Centrality dependence of $J/\psi v_2$

• Non-zero v_2 in central and semi-central collisions

 Low p_T J/ψ has almost v₂ ≈ 0: apply a cut at p_T = 1.5 GeV/c to remove most of the J/ψ that contribute with very small v₂ and leave the bulk of the J/ψ where the v₂ is maximum

Summary

$J/\psi v_2$ at forward rapidity in Pb-Pb collisions at 2.76 TeV by ALICE

 Hint of non-zero v₂ in (20%-60%) collisions at intermediate p_T: 2 ≤ p_T < 4 GeV/c
 ➤ contrary to zero or small v₂ observed at RHIC

- Non-zero v₂ in semi-central (20%-40%) collisions for intermediate p_T:
 > 2 ≤ p_T < 6 GeV/c: with significance ~ 3.0 sigma
- Non-zero v₂ for J/ψ with p_T ≥ 1.5 GeV/c in central (5%-20%) and semi-central (20%-40%) collisions

Conclusions

- In 20%-60% collisions (same as RHIC measurements)
 - ALICE measured J/ψ v₂: in qualitative agreement with transport models with 50% regeneration
 - At high p_T: the flow of B feed-down J/ψ might have a major impact on the measured inclusive v₂

- In central (5%-20%) and semi-central (20%-40%) collisions
 - Indication of non-zero v₂ favors regeneration mechanism which may contribute significantly to the production of J/ψ in more central Pb-Pb collisions at LHC energy
- Complement to $J/\psi R_{AA}$ results:
 - The non-zero $J/\psi v_2$ at intermediate p_T and less suppression with respect to RHIC are indications for an observation of regeneration from charm quarks in the QGP phase

Thanks!

Backup slides

Results from other methods

- Hadronization model
- Event plane (EP) method with VZERO-A
 - EP flattening
 - EP resolution in various centralities used in these analyses
- $6-\Delta\phi$ method in centrality 20% 60% vs. other methods
 - $2-\Delta \phi$ method: anisotropy in/out-of-plane
 - Cumulant (2-particle correlation) method
 - Signal extraction and result
- Centrality dependence of $J/\psi v_2$ without p_T cut
- Differential $J/\psi v_2$ in various centrality bins

J/ψ suppression at RHIC and LHC

- By statistical hadronization model
 - More (re)generated J/ ψ at LHC energy comparing to RHIC energy in the hadronization phase
 - \rightarrow leads to less suppression

Elliptic flow with event plane method

- Spatial anisotropy is converted via multiple collisions into an anisotropy of momentum distribution
- The azimuthal dependence of the particle yield can be written in the form of a Fourier series:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_{\rm t}dp_{\rm t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_R)] \right)$$
$$v_2 = \left\langle \cos[2(\phi - \Psi_{RP,2})] \right\rangle$$

Event plane flattening from VZERO

- Event plane flattening steps:
 - gain equalization ring by ring
 - recentering, twisting and rescaling of VZERO EP cumulant

 $Q_{2,x} = \langle Q_{2,x} \rangle + A^+ [\cos 2\Psi_2 + \Lambda^+ \sin 2\Psi_2]$ $Q_{2,y} = \langle Q_{2,y} \rangle + A^- [\cos 2\Psi_2 + \Lambda^- \sin 2\Psi_2]$

where the parameters $\langle Q_{2,x} \rangle$, $\langle Q_{2,y} \rangle$, A^+ , A^- , Λ^+ and Λ^- are extracted from the mean and RMS of the $Q_{2,x}, Q_{2,y}$ and $Q_{2,x}Q_{2,y}$ distributions

• finally remove residual fluctuations due to azimuthal segmentation of VZERO rings with Fourier flattening technique using one single parameter $\langle \sin 8\Psi_{EP,2} \rangle$, represents the 8th Fourier moment of the event-plane distribution

Event plane from VZERO-A

counts

- Event plane flatness
 - Deviation from constant within 1% deviation
- Event plane resolution
 - Two sets of 3 sub-events in MB events in the same runs for systematics
 - TPC + full VOA + full VOC
 - V0A + two rings in V0C

- Event plane resolution within large centrality bins
 - Resolution weighted by the number of J/ψ in smaller centrality bins

Centrality	Correction factor
5%– $20%$	$0.548 \pm 0.003 \text{ (stat)} \pm 0.009 \text{ (syst)}$
20% - 40%	$0.610 \pm 0.002 \text{ (stat)} \pm 0.008 \text{ (syst)}$
40%– $60%$	$0.451 \pm 0.003 \text{ (stat)} \pm 0.008 \text{ (syst)}$
60% - 90%	$0.185 \pm 0.005 \text{ (stat)} \pm 0.013 \text{ (syst)}$
20%– $60%$	$0.576 \pm 0.002 \text{ (stat)} \pm 0.008 \text{ (syst)}$

2- $\Delta \phi$ method: anisotropy in/out-of-plane

• $2-\Delta \varphi$ method:

Irfu

- A direct calculation from J/ψ yield anisotropy in-plane and out-of-plane
- Correct v_2^{obs} by the event plane resolution σ_{EP}

Cumulant (2-particle correlation) method

 $V_{n.AC}$

- $J/\psi v_2$ study without event plane determination $\langle Q_n A Q_n^* P \rangle = \langle Q_n A \rangle \langle Q_n^* P \rangle$
 - Advantages

Irfu

- Large η gap yield non-flow suppression
- No requirement on full azimuthal coverage
- no event plane correction needed \rightarrow avoid systematical uncertainties from σ_{EP} corre
- direct correlation of dimuon, SPD tracklets and V
- Disadvantages
 - need high statistics in each centrality/invariant mass/ $p_{\rm T}$ bin
 - Study dimuon v_2 in p_T bins (20%-60%): 0-2, 2-4, 4-6, 6-10 GeV/c
 - v_2 extraction in 2-4 GeV/c possible \rightarrow possibly due to stronger flow signal and not too low statistics
 - Large fluctuation in lower $p_{\rm T}$ bin (stat. OK, but weak flow)
 - Large statistical uncertainty in higher $p_{\rm T}$ bins (too low stat.)

References: N Borghini, P M Dinh, J-Y Ollitrault: PRC63 (2001) 054906, PRC64(2001)054901 Experimental implementation: PHENIX Collab PRL94 (2005) 232302

$$V_{n,AB} \equiv \frac{\langle v_{n,A} v_{n,B} \rangle}{\langle N_A N_B \rangle} - \frac{\langle v_{n,A} \rangle}{\langle N_A \rangle} \frac{\langle v_{n,B} \rangle}{\langle N_B \rangle} = v_{n,A} v_{n,B}$$
$$v_{n,B+C} = \frac{\langle N_B \rangle v_{n,B} + \langle N_C \rangle v_{n,C}}{\langle N_B \rangle + \langle N_C \rangle} \qquad v_{n,B}^2 = \frac{V_{n,AB} V_{n,BC}}{V_{n,AC}}$$

correction
nd V0A
$$\int_{1}^{\infty} \int_{0}^{0} \int_{0}^$$

Irfu

Centrality scan: differential J/ ψ v₂

