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Abstract

Multiparticle correlations, such as forward dihadron correlations in pA collisions, are an impor-
tant probe of the strong color fields that dominate the initial stages of a heavy ion collision. We
describe recent progress in understanding two-particle correlations in the dilute-dense system,
e.g. at forward rapidity in deuteron-gold collisions. This requires evaluating higher point Wilson
line correlators from the JIMWLK equation, which we find well described by a Gaussian approx-
imation. We then calculate the dihadron correlation, including both the “elastic” and “inelastic”
contributions, and show that our result includes the double parton scattering contribution.

1. Introduction

The physics of high energy hadronic or nuclear collisions is dominated by the gluonic degrees
of freedom of the colliding particles. These small x gluons form a dense nonlinear system that
is, at high enough

√
s, best described as a classical color field and quantum fluctuations around

it. The color glass condensate (CGC, for reviews see [1]) is an effective theory developed around
this idea. It gives an universal description of the small x degrees of freedom that can equally
well be applied to small x DIS as to dilute-dense (pA or forward AA) and dense-dense (AA
or very high energy pp) hadronic collisions. The nonlinear interactions of the small x gluons
dynamically generate a new transverse momentum scale, the saturation scale Qs, that grows with
energy. The scale Qs dominates both the gluon spectrum and multiparton correlations.

The most convenient parametrization of the dominant gauge field is in terms of Wilson lines
that describe the eikonal propagation of a projectile through it. The Wilson lines are drawn from
a probability distribution, whose dependence on rapidity is described by the JIMWLK equation.
This equation reduces, in a large Nc and mean field approximation, to the BK [2] equation and
further, in the dilute linear regime, to the BFKL one.

2. Correlations in a dilute-dense collision

One of the more striking signals of saturation physics at RHIC is seen in the relative azimuthal
angle (∆ϕ) dependence of the dihadron correlation function, where the ∆ϕ ≈ π back-to-back peak
is seen to be suppressed in dAu-collisions compared to pp collisions at the same kinematics [4, 5].
The CGC description of this correlation starts from a large x parton radiating a gluon, with
subsequent eikonal propagation of the pair through the target. To calculate the matrix element
for this process one needs target expectation values of products of Wilson line operators, such as
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Figure 1: Left: the JIMWLK result for the quadrupole correlator compared to the Gaussian approximation. Right:
Comparison to the “naive large Nc” approximation. Shown are the initial condition (MV model) at y = 0 and the result
after 5.18 units of evolution in rapidity in the “line” coordinate configuration where xT = uT and yT = vT . Figures from
ref. [3].

the dipole and the quadrupole

D̂(xT , yT ) =
1

Nc
TrU(xT )U†(yT ) Q̂(xT , yT ,uT , vT ) =

1
Nc

TrU(xT )U†(yT )U(uT )U†(vT ). (1)

For practical phenomenological work it would be extremely convenient to be able to express
these higher point correlators in terms of the dipole, which is straightforward to obtain from the
BK equation. In the phenomenological literature so far [6] this has been done using a “naive large
Nc” (or “elastic”) approximation where the quadrupole is assumed to be simply a product of two
dipoles. A more elaborate scheme would be a “Gaussian” approximation (“Gaussian truncation”
in [7]), where one assumes the relation between the higher point functions and the dipole to be
the same as in the (Gaussian) MV model. The expectation value of the quadrupole operator in
the MV model has been derived e.g. in ref. [8].

In ref. [3] the validity of these approximations was studied by comparing them numerically
to the solution of the JIMWLK equation. As studying the full 8-dimensional phase space for
the quadrupole operator would be cumbersome, the numerical study was done in two special
coordinate configurations. The most important results of ref. [3] is demonstrated in Fig. 1, with a
comparison of the initial and evolved (for 5.18 units in y) JIMWLK results to the approximations.
The MV-model initial condition y = 0 satisfies the Gaussian approximation by construction, but
the calculation shows that the Gaussian approximation is still surprisingly well conserved by
the evolution1. The naive large Nc approximation, on the other hand, fails already at the initial
condition.

3. Dihadron correlation

This result does not yet fully address the effect on the measurable dihadron cross section.
For that one must convolute a linear combination of Wilson line operators 〈Q̂D̂〉, 〈D̂D̂〉 and 〈D̂〉
with the q → qg splitting wavefunction. For the explicit expressions we refer the reader to

1A possible explanation for the success of the Gaussian approximation has been proposed in [9].
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refs. [6, 10]. We have reported the outcome of this nontrivial numerical task in more detail in
ref. [10].

Figure 2: Kinematics of the DPS limit. The
double parton scattering contribution is obtained
from the CGC dihadron cross section formula in
the limit nT → 0.

When using the full Gaussian correlator, instead of
only the “elastic” term, one encounters an additional
complication in the calculation, not encountered with
the approximations used in refs. [6, 11]. In the limit
of large distance, or small momentum, between the
quark and the gluon, the operator 〈Q̂D̂〉 factorizes into a
product of an adjoint and a fundamental representation
dipole operator, describing the independent scattering
of the quark and the gluon, respectively, off the target
(see fig. 2). When this product is multiplied by the split-
ting wavefunction, the resulting integral is logarithmi-
cally infrared divergent. This divergence corresponds
to a correlated quark-gluon pair being present in the in-
coming probe wavefunction, namely the double parton
scattering (DPS) contribution discussed in this context in ref. [12]. For a consistent treatment it
must be subtracted from the correlated cross section and calculated separately using an additional
nonperturbative input describing the probe, a double parton distribution function.

In fig. 3 we show the parton level dihadron production cross section obtained using different
approximations for the quadrupole. We notice that the width and especially the height of the
away side peak are modified when replacing the naive approximation, used e.g. in [6], by the
Gaussian approximation [8]. In fig. 4 we show the yield divided by the ∆ϕ-independent pedestal
for pp, pAu and dAu collisions. The back-to-back correlation is suppressed for a nuclear target,
due to the larger intrinsic transverse momentum ∼ Qs. When the probe is switched from a proton
to a deuteron, on the other hand, the correlated peak stays the same but the ∆ϕ-independent
background increases, resulting in a decreased ratio of the peak to the pedestal, shown in the
plot. This is the effect discussed in much detail in ref. [12].

There is some remaining uncertainty in the normalization of the single inclusive spectrum (as
evidenced by substantial K-factors needed in the literature to describe the single inclusive data),
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Figure 3: A parton level comparison of the elastic ap-
proximation to our Gaussian approximation and its large
Nc limit.
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Figure 4: Illustration of the effect of the DPS contribution
on the parton level: the dihadron yield divided by the ∆ϕ-
indpendent part.
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Figure 5: Comparison of our calculation to the PHENIX (left, [4]) and STAR (right, [5]) dihadron correlation data. The
initial saturation scales are Q2

s0 = 1.51 GeV2 (solid line) and Q2
s0 = 0.72 GeV2 (dashed line).

which propagates to a factor ∼ 2 uncertainty in our estimates for the ∆ϕ-independent pedestal.
When comparing with PHENIX [4] data, we obtain for the trigger transverse momentum range
1.1 . . . 1.6 GeV a pedestal 0.11 GeV−1, whereas the experimental value is 0.176 GeV−1. Simi-
larly for the trigger transverse momentum 1.6 . . . 2 GeV we obtain 0.08 GeV−1, and the exper-
imental value reads 0.163 GeV−1. For the STAR [5] data our estimate for the pedestal is 0.02
when the experimental value is 0.0145. In order to compare to the experimental correlation peaks
from the PHENIX and experiments we have adjusted this pedestal to the data. The resulting com-
parison is shown in fig. 5.
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