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Abstract

Two-dimensional correlation functions iy — A¢ for charged hadrons emitted in heavy-ion col-
lisions are calculated in event-by-event hydrodynamicgh\ttie Glauber model for the initial
density distributions in the transverse plane and elomgdémnsity profiles in the longitudinal
direction, the flow patterns in the azimuthal angle of the-tlimensional correlation function
are properly reproduced. We show that the additional féllbbthe same-side ridge in the lon-
gitudinal direction can be explained as dteet of local charge conservation at a late stage of
the evolution. This additional non-flowffect increases the harmonic flow ¢deents for the
unlike-sign particle pairs.

1. Introduction

The collective expansion of dense matter in heavy-iongioltis is determined by the geome-
try of the fireball. In the longitudinal direction the dengitrofile is assumed to be approximately
boost-invariant for central rapidities, while in the traesse plane it is asymmetric. The shape
and the size of the fireball fluctuates event-by-event [133]e dependence of the correlation
function on the azimuthal angle is dominated by the even alth@rmonic flow components
[1, 4, 5] and can be reproduced in event-by-event viscousduythamics calculations [6—8]. The
shape of the same-side ridge in the longitudinal (pseudlditgpy) direction can yield important
information on the mechanism of the energy deposition iretiiéy stage of the collision [9-13].
The dominant features observed in the data are the saméAgide 0) and away-sideN¢ =~ r)
ridge, with the latter one exhibiting no dependenceAgn and the former one showing an in-
crease of the correlation function in the form of a same-pigik. This structure is much more
pronounced for correlations of the unlike-sign hadron4, [B].

The formation of charges at a late stage of the collectiviuéiem induces strong correlations
between the unlike-sign hadrons in the pseudorapidity andwthal angle [16—19]. We argue
that the same mechanism explains the observed shape ofrtigessde ridge in the (unbiased)
two-dimensional correlation function [20]. These non-floarrelations from the local charge
conservation also yield a small contribution to the flowfticents.

2. Hydrodynamic model with local charge conservation

We use a 31-dimensional viscous hydrodynamic model [21] with bulkiahear viscosities
[22]. The calculations are run event-by-event with thei@hiéntropy density taken as a sum of
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Gaussians of width.@fm at the positions of the participant nucleons from GLIS&EXO [23].
Particle emission at freeze-out is performed using the TMEATOR code [24].
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Figure 1: Mechanism of the generation of charge conservatiorelations from resonance decays and local pair creatio

We implement the local charge conservation in the stagilstimission code. Opposite-charge
particles are emitted in pairs from the same charge neutrid dlement. Thus, they feel the
same collective flow velocity which collimates their motioihe spread in their relative mo-
menta comes the thermal motion (Fig. 1). The procedure usgdrierate particle distributions
presented here yields slightly stronger correlations amexqbto [20], including pairs from reso-
nance decay cascades as well. Our hydrodynamic model neggsevell the particle spectra and
flow codficients.

3. Two-dimensional correlation functions
Two-dimensional correlation functions

C(An. Ag) = NP2 (A, Ag) /NP (An, Ag), (1)

real mixe

are calculated for the like- and unlike-sign hadron painghk case of the uncorrelated statistical
emission of particles at freeze-out there is only a smdfedince in the results for fikerent
charge combinations (panels (a) and (b) in Fig. 2). Some \sbkakt range correlations between
unlike charged particles come from resonance decays. Trhe-s@le peak in the unlike-sign
correlation function (panel (b)) is much smaller than olssdrexperimentally.

The local charge conservation mechanism generates nioligce@rrelations in the directions
of the emitted hadron pairs. The unlike-sign particle pgéserated at freeze-out are collimated
by the common collective flow. Theffect is clearly seen as a strong same-side peak in the
unlike-sign correlation function (panel d)) that is not eb&d for like-sign pairs (panel c)).
These features of the same-side ridge are compatible vétaxperiment [14].

4. Flow coefficients

The two-dimensional correlation function shown in Fig. 2tins the information on all the
harmonic flow coéicients. The local charge conservatidteet gives a non-flow contribution to
the observed? codficients. The charge conservation correlations decreaselvétmultiplicity
and with the pseudorapidity separation of the particle (&ig. 3). The non-flow correlation
increasev? at small pseudorapidity separations, in a similar way ase¢senance decays. The
mechanism of local charge conservation explains the madmind the range ity of the non-
flow correlations inv,, and is consistent with the measureffetience of the flow cd&cients for
unlike and like-sign pairs.
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Figure 2: Two-dimensional correlation functions for peletiemission without local charge conservation (panelsud)
(b)) and with local charge conservation (panels (c) and @&)}Au collisions aty/Syn = 200 GeV in 30-40% centrality
class Tt = 150 MeV, 02 < pt < 2 GeV).
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Figure 3: Elliptic (upper lines) and triangular (lower Is)eflow codficients plotted as function of the relative pseudo-
rapidity of the pair. The thick and thin lines represent thsuits of the simulations with and without the local charge

conservation, respectivelyf{ = 150 MeV, 015 < pt < 4 GeV). The shaded bands are extracted from the measured
two-dimensional correlation functions [14].



Figure 4 shows th@, dependence of,. The local charge conservatioffects give a small
contribution to ther, measured with the second cumulant method. Thfeets may be reduced
when using a pseudorapidity gap for the pair dp-aector defined at forward rapidities. The
mechanism of local charge conservation presents a donsoante of non-flow correlation in
heavy-ion collisions. It gives a noticeable contributioivt andv,. The charge splitting induced
by the local charge conservatiofiects inv; gives a large contribution to charge parity violation
signals [25, 26]. However, to reproduce the magnitude ofctierge-independent correlations
[27], the total transverse momentum conservation has tmpesed [28]. Within the hydrody-
namic model with flow and local charge conservation the ahdaance functions in relative
pseudorapidity can be extracted as well. The results aratisfactory agreement with the data
[19].
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Figure 4: The elliptic flow cogicient of charged particles with (dashed lines) or withoui¢slines) local charge
conservation mechanism, centrality 0-10% (panel a) and®®6-(panel b). Data from [29, 30].
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