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Abstract

Determining the dipole model unintegrated gluon distribution (UGD) is a problem of significant
interest in small-x physics. Here we relate the dipole gluon distribution to the angular correlation
function of the process pA → ` ¯̀π0X, which provides a clean probe of the nuclear structure, and
compute numerical predictions for the correlation function based on three models for the UGD:
the GBW model, and BK evolution with fixed and running coupling. With all three models, the
correlation exhibits an interesting double-peak structure, but the BK evolution is necessary to
reproduce the near-side emission peak.

1. Introduction
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Figure 1: pA→ ` ¯̀π0X at tree level with
kinematic variables labeled. Adapted
from reference [1].

One of the major initiatives in small-x physics is the de-
termination of parton distributions in nucleons and nuclei.
While there is already much data available on integrated quark
and gluon PDFs, the unintegrated gluon distributions (UGDs)
have not been so well studied, and thus determining their na-
ture is a current focus of the small-x community. There are
actually two independent UGDs: the Weizsäcker-Williams
gluon distribution, which can be interpreted as the gluon num-
ber density in light-cone gauge and is probed by DIS interac-
tions, and the dipole gluon distribution, which is instrumental
in various cross-section calculations, in particular Drell-Yan
processes such as what is studied here.

Our focus will be on the angular dependence of the pro-
cess pA → ` ¯̀π0X. Lepton pair production processes such as this one give a clean probe of the
dipole gluon distribution relative to multijet events, because the virtual photon escapes from the
collision without final-state interactions, and the fragmentation γ → ` ¯̀ can be calculated ex-
actly. This allows one to compute an exact analytical expression for the correlation CDY(∆φ).
This quantity reveals additional information about the UGD of the nuclear target as compared to
the inclusive cross section alone, which has been the focus of previous studies.

This is a summary of work originally published in reference [1].
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2. Calculation

Our analysis concerns itself with the process pA→ ` ¯̀π0X at tree level, as shown in figure 1.
This channel dominates the Drell-Yan lepton pair production at small x. In the figure pp and
pA are the momenta of the proton and nucleus, xp and xg are the momentum fractions of the
interacting quark and gluon, and z2 = p+

π/k
+
q is the longitudinal momentum fraction of the quark

jet which is carried by the pion. Also z = p+
γ /q

+ (not shown in the figure) is the fraction of total
momentum taken by the photon.

The exclusive cross section for this process has been explicitly calculated [2]:

dσpA→γ∗π0X

dYγdYπd2pγ⊥d2pπ⊥d2b
=
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, (1)

where ε2
M = (1 − z)M2 with M being the invariant mass of the virtual photon (i.e. of the lepton

pair), q⊥ = pγ⊥ + kq⊥, and P̃⊥ = (1 − z)pγ⊥ − zkq⊥. The gluon distribution is defined as the
Fourier transform of the dipole scattering amplitude: Fxg (q⊥) =

∫
d2r⊥
(2π)2 e−iq⊥·r⊥S (2)

xg (r⊥). From this
we can then compute the inclusive cross section by integrating over the phase space of the quark,
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The correlation function CDY(∆φ) is the ratio of the exclusive to inclusive cross section:

CDY(∆φ) =

2π
∫
· · ·

∫
p{γ,π}⊥>p⊥cut

dpγ⊥pγ⊥dpπ⊥pπ⊥
dσpA→γ∗π0X

dYγdYπd2pγ⊥d2pπ⊥d2b∫∫
pγ⊥>p⊥cut

d2pγ⊥
dσpA→γ∗X

dYγd2pγ⊥d2b

, (3)

It depends on the angle between the virtual photon and pion, and also on their rapidities. The
momentum integrals are manually cut off at a minimum value p⊥cut to simulate the acceptance
of the detector; p⊥cut can be adjusted to reflect any given experimental apparatus.

This expression (3) can be numerically evaluated for any kinematically allowed values of
M, Yγ, Yπ, p⊥cut,

√
s, and b, and for any given nuclear gluon distribution Fxg (q⊥). To evaluate

the correlation numerically, we use the MSTW 2008 NLO parton distributions [3] and the DSS
fragmentation functions [4].
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2.1. Gluon distribution models
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Figure 2: Gluon distributions for the three models.
The different curves in each plot correspond to dif-
ferent values of rapidity. Figure adapted from refer-
ence [1].

For the gluon distribution, we have investigated
three models: the GBW model, the BK evolution
model with fixed coupling, and BK with running
coupling. These are shown in figure 2.

In the GBW model [5], we take the gluon dis-
tribution to have an exponential dependence

Fxg (k2,Y) =
1

πQ2
sA(Y)

e−k2/Q2
sA(Y) (4)

where the nuclear saturation scale is given by
Q2

sA = c(b)A1/3Q2
s0
( x0

x
)λ with Qs0 = 1 GeV, x0 =

0.000304, and λ = 0.288.
For the BK model, we use equation (4) at Y =

− ln 0.01 as our initial condition and use the BK
evolution equation [6, 7] to evolve this to larger val-
ues of rapidity. The equation in momentum space
is

∂φ(k,Y)
∂Y

= ᾱs

∫ ∞

0

dk′2

k′2

[
k′2φ(k′) − k2φ(k)∣∣∣k2 − k′2

∣∣∣
+

k2φ(k)
√

4k′4 + k4

]
− ᾱsφ

2(k) (5)

Fxg is then computed as the Laplacian of φ,

Fxg (k2,Y) = 1
2πk2

∂2φ(k2,Y)
∂(ln k)2 . This model does cor-

rectly reproduce the power tail expected from perturbative QCD at large k⊥, but it disagrees
with DIS data: with the standard value of αs = 0.2, the evolution of the saturation scale is too
fast.
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Figure 3: Rapidity dependence of the peak
of kφ(k), which is proportional to the satu-
ration scale, for various parameter choices.
Adapted from reference [1].

To remedy this, we can slow the evolution of the sat-
uration scale by reducing the value of αs. Some exper-
imentation shows that αs = 0.062 most closely matches
the slope of the saturation scale computed from the GBW
model; this is graphically shown in figure 3.

Instead of tuning αs, we can compute the BK equation

with a running coupling, ᾱs(k2) =
(
β ln k2+µ2

Λ2
QCD

)−1
. For large

rapidities, the saturation scale computed using a running
coupling asymptotically scales as Q2

s ∼ eλr
√

Y , slower than
the fixed-coupling scaling of Q2

s ∼ eλY . Using a running
coupling improves the correspondence with data in other
ways as well, so the running coupling may be a physically

preferable alternative to tuning the fixed coupling. For optimal matching, we do still adjust the
value of Λ2

QCD down from the standard 0.0588 GeV2 to 0.001 GeV2, and as shown in figure 3, this
produces an evolution of the saturation scale very similar to that of the experimentally motivated
GBW model.
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Figure 4: Results of the calculation for parameters corresponding to RHIC (top row) and the LHC at full design energy
(bottom row). Plots adapted from reference [1].

3. Results

Given any particular choice of gluon distribution Fxg (k2,Y), we can calculate numerical val-
ues of the correlation from equation (3) by fixing the parameters listed at the right of figure 4. At
each collider, we simulate a low-mass and high-mass virtual photon.

A key feature of these results is that the near-side peak around ∆φ = 0 only appears with the
BK equation solution, not the GBW model. The correlation at these angles samples Fxg at large
momenta, where the GBW model falls exponentially. We also notice a peculiar double-peak
structure around ∆φ = π. This is unique to Drell-Yan processes, and is caused by the parton-
level cross section going to zero at a total momentum q⊥ = 0. In the higher energy regime the
away-side peak is much narrower, and is enhanced in amplitude relative to the near-side peak as
compared to the RHIC case.
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