ATLAS Pixel Operational experience

B. Di Girolamo CERN

2011: a quite good year

- We closed 2011 with less operational issues
 - However we did have an increase in failures
 - Last year I gave you a 97.3% as available detector, unfortunately today we have 95.8%
 - A number of modules stopped sending data: main problem the optoelectronics
 - More later
- We didn't suffer anymore from beam background effects
 - LHC improvements and more robust handling at our back-end electronics level

2011: a quite good year

- However, correlated to the increased luminosity we started to see "SEU" effects
 - Double quotes because these are at the level of the chip (a.k.a. MCC) performing event building at the module level and managing trigger and commands
 - If SEU happens there we loose the data output and we can't have a flag saying "Yes that was it"
 - However symptoms are clear, correlation with occupancy is clear, it even happens randomly in outer layers: what else would you call it?
 - Not a big problem: we can just reconfigure the module and get going again

The Pixel module

2011: a good year

- Up to now we observe a rate between 0.5 to 1 module/hour
- The recovery last year was done manually
 - Order of seconds: busy, reconfigure, resume
- We now have a new back-end electronics firmware that will allow to recover in milliseconds without the need of asserting the busy

2011: a good year

- We didn't observe so far SEU effects at the frontend chip level
- We have a triple redundant logic and SEUs are flagged in the data stream if any

A quick look to occupancy

A quick look to occupancy

Slopes of occupancy and ratios			
radius (mm)	Slope	Ratio to Layer2	Speed (MHz)
50.5	7.20E-05	3.21	160
88.5	3.36E-05	1.50	80
122.5	2.24E-05	1.00	40
disks	2.64E-05	1.18	80

Ratios between layers in Barrel

- The outermost layer was expected to have 4 times
 less occupancy than the innermost layer
 - Instead only 3.2 times less: 20% more occupancy than expected
- The middle layer is within expectations
- □ Overall around a factor 2 higher occupancy when extrapolated to L = 1E34 cm⁻² s⁻¹
- Making extrapolations to 2021 and up to 3 times the design luminosity

Where are our limits

- $\hfill\Box$ The innermost layer, provided some lower resolution in charge, can go up to $\sim 3\text{E}34$
- The outer layer due to the higher than expected occupancy, will need more back-end electronics in counting rooms and can go up to 3E34
- The middle layer would have limitations when approaching 2E34 at the FE chip level
 - You could then use the same "trick" as for the innermost layer, but...
 - The next limitation kicks in: we saturate the links between the MCC and the back-end electronics
 - It does not scale with occupancy because of the header and trailer information that become a problem with a readout at 80 MHz instead of 160 MHz and that limits the middle layer to be ok up to 2E34
 - but with some services upgrade can go beyond 3E34
- We are inserting a 4th layer in 2013/14 and no readout limitations (new FE chip)

Service repair and upgrade

- We started a production of new services to fix the optoelectronics problems
- We upgraded these new services to allow the higher speed of operations for the middle barrel layer
- Discussions ongoing about the deployment

2011: the year of rad damage signs

- Last year we didn't observe yet effects of radiation damage
- Yesterday we got a nice overview of the effects in pixels and strips
- Effects at the FE level? Not really manifest so far
 - Tiny variations in thresholds are cleared when we tune the threshold for the smallest dispersion
 - Some understanding effects seen in Disks

- An example of an inhomogeneous leakage current distribution from the perpixel scan: end-cap disk modules oriented in R direction, (R \square column #).
 - Clear radial dependence of the leakage current.
 - Observe steps in increase related to FE chip; investigations ongoing.

What else?

- Very important the automatic switch-on of the detector
 - The shifter would have only to watch when it happens
- Prototype ready
 - It looks at BCM (beam monitors) occupancies
 - LHC conditions and luminosity, if all good:
 - Then switches on Disks, look at occupancy
 - □ If good: switch in sequence the rest, each time checking
- Switch off already automatized

Shifts and e-log

- We reduced our shift crew: 1 shifter looks at the entire Inner Detector (Pixel, SCT and TRT)
- Up to now, until the switch on will be automatized, the run coordinator switches on the Pixel
- We managed to have an improvement of the e-log with appending capabilities.

All that required few fixes

- Reduction of tools available to the shifter
 - Less handles, less errors
- More meaningful plots
 - Not as advanced as ALICE, but on that path
- More experts around
 - Difficult as experts flow rate is low in input, high in output

Online cooling loops leak measurements

Motivations:

- leaks might depend on operation conditions (temperature, pressure, liquid/gas phase etc), so it is complementary to standard high gas pressure tests
 - separate leaks inside pixel volume (danger of corrosion by HF) from leaks outside pixel volume
 - monitor total leaks permanently on the long periods

Contributions: operation-shifts (Greg, Sasha, Laurent, Nicolas), PVSS sonar (Martin), pixel (Iskander, Kerstin), cooling (Koichi, Olivier)

Pixel exhaust sonar

easurement of the 3F8 during normal xel operation

- Zero level calibration with flux of pure N2
- Warning: Absolute scale to be repeated with Ecotec3000, as 40-50 % differences were seen in earlier measurements

Longer term 16-20 January 2012

Cooling leaks

- We monitor continuously
- Not worrying at all so far
 - We did irradiations with 1% C3F8 contamination in N2 container with "module" inside
 - No signs of damages
 - We will repeat with higher concentration of C3F8 and higher humidity (in ATLAS we have 0)

