Introduction to the Color Glass Condensate

Kazu Itakura
(KEK, Theory Center)
Oct. 2012 @ Wuhan, China
Aim

• Understand, at the conceptual level, the importance of Color Glass Condensate (CGC) in the high-energy hadron scattering

• Learn how to apply it to heavy-ion collisions: “Glasma”

• Know how it works in comparison with the most recent experimental data from RHIC and LHC
Cross sections **GROW** with increasing energies and amount to **> 100 mb** at cosmic ray or LHC energies.
How to “read” these data?

- Proton’s “geometric” cross section $\pi r_c^2 \sim 30$ mb (charge radius $r_c \sim 1$ fm)
 - maximum absorption “shadowing” $\sim 2\pi r_c^2 \sim 60$ mb < 100 mb
 - Proton is “expanding” !?

- Particle Data Group (COMPETE Collab. Phys. Rev.D65 (2002))

\[
\sigma_{total}^{ab}(s) = Z^{ab} + B \ln^2 s + ...
\]

- Z^{ab}: constant
- B: independent of hadron species a, b
- $\ln^2 s$: consistent with the Froissart bound (unitarity bound)
This example implies ...

- At high energies, *something “unusual and interesting”* must be happening in hadrons.

 - “expansion” of a target

 - unitarity

 - universal picture!

→ consistent with the Color Glass Condensate.

(but only qualitatively at present for the total cross section)
We want to understand ...

- universal picture of hadrons/nuclei in the high-energy limit (if any)
- if we can describe it in QCD, in particular, in weak-coupling technique
- at which energy scale it starts to appear
- to what extent we can understand the experimental results at current energies with this picture
What is the CGC?

- **Dense gluonic states** in hadrons which **universally** appear in the **high-energy limit** of scattering

 Color ... gluons have “colors”

 Glass ... gluons with small longitudinal mom. fractions ($x << 1$) are created by long-lived partons that are distributed randomly on the transverse disk

 Condensate ... gluon density is very high, and saturated

- **Most advanced** (and still developing) **theoretical picture of high energy scattering in QCD**

 Based on QCD (weak coupling due to $Q_s >> \Lambda_{QCD}$, but non-perturbative)

 Unitarity effects (multiple scattering, nonlinear effects)

 LO description completed around 2000
Proton composition changes with energy

Deep inelastic scattering (DIS: ep \(\rightarrow \) eX) can probe quarks and gluons in a proton

\[Q^2 : \text{transverse resolution} \]
\[x : \text{longitudinal mom. fraction of partons} \]

Gluons are the dominant component at high energy (small x)

Gluons (must be multiplied by 20)
Life and death of fluctuation

fluctuation of a fast moving parton

\[\begin{align*} p & \rightarrow p - k \\ k & \end{align*} \]

\[p^\mu = (p, 0_\perp, p) \]

\[k^\mu = (E_k, k^i, k^z = xp) \]

Lifetime of fluctuation

\[(xp \gg k_t) \]

\[\Delta t \sim \frac{1}{\Delta E} = \frac{1}{E_k + E_{p-k} - p} \sim \frac{2x(1-x)p}{k_\perp^2} \]

- If parent parton has large energy \(xp \gg k_t \),
 \(\rightarrow \) fluctuation becomes long lived
- With increasing \(p \), long-lived fluct. w/ smaller \(x \) becomes possible
- If daughter parton is long-lived, it can further fluctuate:
 \(\rightarrow \) multiple parton (gluon) production
- One gluon emission is enhanced: \(\alpha_s \ln 1/x \gg 1 \) at small \(x \ll 1 \)
 Need to sum up many-gluon emissions \((\alpha_s \ln 1/x)^n \)
- When the density of gluons becomes high, they start to interact with each other \(\rightarrow \) CGC
- Fluctuations become real particles in reactions
Phase diagram of a proton as seen in DIS

Q_s^{-1} is typical transverse size. Q_s^2(x) \sim 1/x^\lambda increases (x \to 0)
\alpha_s(Q_s^2) \ll 1 weak coupling

Recombination of gluons

N_g \leq 1 unitarity

1/x in log scale

Multiple gluon emissions

N_g \sim e^{\omega \ln 1/x}

Parton number increases, but density decreases

Q^2

Transverse resolution

Color glass condensate

Gluon density

Parton gas

Higher energies

No region

Saturation scale Q_s(x)

DGLAP

BK

BFKL
Saturation scale : $Q_s(x)$

• Gluon distribution function: $xG(x, Q^2)$
 number of gluons having longitudinal fraction in the interval “$x - x + dx$”
 looked at transverse resolution scale $1/Q$.

• Typical pQCD cross section : $\sigma \sim \alpha_s/Q^2$

Gluons fill the transverse area of hadron (πR^2) when
$$\frac{\alpha_s}{Q^2} \cdot xG(x, Q^2) = \pi R^2$$

Q satisfying this is called “saturation momentum” Q_s

Intuitive picture:

1/Q_s is the “transverse size” of gluons when they fill the transverse area of a hadron.

Typical transverse momentum carried by gluons in a hadron.
Saturation scale: $Q_s(x)$

$$\frac{\alpha_s}{Q_s^2} \cdot x G(x, Q_s^2) = \pi R^2$$

- **Small-x limit of DGLAP equation** (Double Log App.)

 $$x G(x, Q^2) \sim e^{\sqrt{4\bar{\alpha}_s y \rho}}$$
 $$y = \ln \frac{1}{x}, \quad \rho = \ln \frac{Q^2}{Q_0^2}, \quad \bar{\alpha}_s = \frac{N_c \alpha_s}{\pi}$$

 $$Q_s^2 \propto e^{4\bar{\alpha}_s y} = \left(\frac{1}{x}\right)^{4\bar{\alpha}_s}$$

- **BFKL equation** (resummation: LO $(\alpha_s \ln 1/x)^n$, NLO: $\alpha_s (\alpha_s \ln 1/x)^n$)

 Gluon number (LO) $\sim e^{\omega y}$

 $$\omega = 4 \ln 2 = 2.77 \bar{\alpha}_s$$

 $$Q_s^2 \propto \left(\frac{1}{x}\right)^{\lambda}$$

 LO $\lambda = 4.88 \bar{\alpha}_s$ \[\text{Iancu, Itakura, McLerran’02}\]

 NLO $\lambda \sim 0.3$ \[\text{Triantafyllopoulos, ’03}\]

Q_s grows with increasing energy (decreasing x) → weak-coupling at high energies
Going up higher energies: evolution eqs.

Evolution wrt x (or rapidity $y = \ln \frac{1}{x}$)

- **BFKL** (LO: $(\alpha_s \ln \frac{1}{x})^n$, NLO: $\alpha_s (\alpha_s \ln \frac{1}{x})^n$)
 \[
 \frac{\partial \phi(x, k_t)}{\partial \ln(x_0/x)} \approx \mathcal{K} \otimes \phi(x, k_t)
 \]
 K: gluon splitting $g \rightarrow gg$
 ϕ: unintegrated gluon distr.

- **BK** (includes the nonlinear effects)
 \[
 \frac{\partial \phi(x, k_t)}{\partial \ln(x_0/x)} \approx \mathcal{K} \otimes \phi(x, k_t) - \phi(x, k_t)^2
 \]

Known up to full NLO accuracy. [Balitsky, Chirilli 2008]
But for practical purposes, we use **BK with running coupling** \rightarrow “rcBK”

\[
K^{\text{run}}(r, r_1, r_2) = \frac{N_c \alpha_s(r^2)}{2\pi^2} \left[\frac{r^2}{r_1^2 r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]
\]
Evidence: Geometric Scaling

DIS (ep, eA) cross sections scale with Q^2/Q_s^2

- Stasto, Golec-Biernat, Kwiecinski
 - PRL 86 (2001) 596
- Freund, Rummukainen, Weigert, Schafer
 - PRL 90 (2003) 222002
- Marquet, Schoeffel

Ep

- $\gamma*p$ total

eA

- F_2^A/A scaled

Diffraactive ep

- $\beta = 0.2$ for Q^2 in (5-90) GeV
- $\beta = 0.4$ for Q^2 in (5-90) GeV

- $Q_s^2(x,p)$

- $k_t < Q_s^2/\Lambda_{QCD}$ (lancu, itakura, McLerran)

- **Existence of saturation scale Q_s**
- Can determine x and A dependences of Q_s
- Extends outside of the saturation regime $k_t < Q_s^2/\Lambda_{QCD}$ (lancu, itakura, McLerran)

Figure 1. Experimental data on $\sigma_{\gamma*p}$ from the region $x < 0.01$ plotted versus the scaling variable $\tau = Q^2 R_0^2(x)$.

Figure 2. The diffractive cross-section $\beta d\sigma_{\gamma*p \to Xp}/d\beta$ from H1 and ZEUS measurements, as a function of t_\perp in bins of β for Q^2 values in the range [5, 90] GeV2 and for $x_g < 0.01$. Only statistical uncertainties are shown.

Figure 3. Scaling behavior of NMC and E665 F_2^A data vs $\tau = (Q^2/R_0^2(x))$. The vertical axis corresponds to the left-hand side of Eq. (5). The dashed line corresponds to the geometric scaling curve obtained from HERA data. These are shown offset by a factor of 5.
CGC turns into Glasma after heavy-ion collision

Glasma: non-equilibrium matter between Color Glass Condensate (CGC) and Quark Gluon Plasma (QGP). Created in heavy-ion collisions.

Solve Yang Mills eq. \([D_\mu, F^{\mu\nu}] = 0\) in expanding geometry with the CGC initial condition.

\[\alpha_1^i = \text{pure gauge} \]
\[\alpha_2^i = \text{pure gauge} \]
\[\rho_1, \rho_2 \]
\[\alpha_{1,2}^i = 0 \]

Randomly distributed
CGC as the initial condition for H.I.C.

HIC = Collision of two sheets of CGCs

Each source creates the gluon field for each nucleus. \leftarrow Initial condition

$$J^\mu = \delta^{\mu+} \delta(x^-) \rho_1(x_T) + \delta^{\mu-} \delta(x^+) \rho_2(x_T)$$

$$- D_i \alpha^i_{(m)} = \rho_{(m)}(x_{\perp}) \quad \alpha_1, \alpha_2: \text{gluon fields of nuclei}$$

In Region (3), and at $\tau=0^+$, the gauge field is determined by α_1 and α_2

$$A^\pm = \pm x^\pm \alpha(\tau, x_T)$$

$$A^i = \alpha^i_3(\tau, x_T).$$

$$\alpha^i_3 \big|_{\tau=0} = \alpha^i_1 + \alpha^i_2$$

$$\alpha \big|_{\tau=0} = \frac{ig}{2} \left[\alpha^i_1, \alpha^i_2 \right]$$

$$\partial_\tau \alpha \big|_{\tau=0} = \partial_\tau \alpha^i_3 \big|_{\tau=0} = 0.$$
Glasma flux tube structure

Just after the collision: only E^z and B^z are nonzero
(Initial CGC is transversely random)
→ Glasma = electric and magnetic flux tubes extending in the longitudinal direction

Unstable dynamics

Color-electric flux tube
→ gluon pair, qqbar pair production via Schwinger mechanism

Color-magnetic flux tube
→ Unstable against rapidity dependent fluctuation via Nielsen-Olesen instability [Fujii, Itakura 2008]

When both are present
→ Schwinger production of gluons enhanced by the N-O instability [TANJI, ITAKURA 2012]

Typical configuration of a single event just after the collision
Unsolved issues on glasma

• How does the glasma thermalize into QGP?
 unstable dynamics? → turbulent distribution leading to isotropization
 Bose-Einstein Condensation? → see talks by J.P.Blaizot and F.Gelis
 Other mechanisms, such as induced cascade by high pt partons?

• What is the observable consequence?
 Ridge as remnants of longitudinal flux tube structure?

• What kind of fluctuations are there?
 Color fluctuation inherent to CGC generates higher harmonics of flow?
Examples of new progress (1)

- Schenke, Tribedy and Venugopalan, 2012 computed eccentricity and triangularity with IP-Glasma model

- IP-Glasma
- MC-KLN
- MC-Glauber

Fluctuations from nucleon position and color dynamics

Only fluctuations from nucleon positions included

Also computed many other observables
Examples of new progress (2)

- Global analysis of DIS data with rcBK solution (AAMQS) and its application to forward particle production in dAu at RHIC
To reduce ambiguity
- construct a nucleus by randomly placing nucleons
- use AAMQS parameters for proton IC optimized for DIS at small-x
- quantum evolution is performed “locally” in b space

(to avoid IR div. in b-dep BK)

Large x partons
\(f_i(x, k_t) : \text{CTEQ6M NLO} \)

local rcBK evolution
MC-DHJ/rcBK : results

modified MV model ($\gamma = 1.118$)

“running coupling” version of MV model [Iancu-Itakura-Triantafylopoulos] : to be consistent with rcBK evolution

- Set h works well even in pp, but not as good as Albacete-Marquet
- rcMV is not “tuned” (similar param as MV)
- However, both work quite well in dAu (IC dependence reduces at high rapidity)

Best results from theoretical point of view, but still needs better (global) description including pp data (tuning of rcMV is necessary)

reproduce the data nicely
- AAMQS set h and rcMV for $N(r,y)$
- Q_{s0A}^2 fixed by MC; no additional parameter
New ALICE data on pPb @ 5.02 TeV

arXiv:1210.3615
Summary

• CGC is the universal picture of hadrons at high energies, which appears as a result of gluon 3-point vertex. Its theoretical framework is established at the LO level, but is developing beyond the LO.

• CGC provides the initial conditions for the heavy ion collisions, and turns into Glasma. The Glasma is responsible for thermalization, but is not solved yet.

• CGC picture is getting precise and is now seriously compared with experimental data at RHIC (forward rapidity) and LHC. MC-DHJ/rcBK model works well in describing the forward dAu data.
backup
High-energy scattering

High-energy limit = “Regge limit”

total scatt. energy >> typical energy/momentum scale in reaction

Hadron-hadron scattering

Momentum transfer squared

\[t = (p_a - p_c)^2 \]

Total scattering energy squared

\[s = (p_a + p_b)^2 \]

Deep inelastic ep scattering

Total γ*p scattering energy squared

\[W^2 = (p + q)^2 \]

Virtuality of photon

\[Q^2 = -q^2 \]

\[W^2 \gg Q^2 \]

\[x \sim Q^2 / (W^2 + Q^2) \rightarrow 0 \]