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Figure 12. The foreground-reduced Internal Linear Combination (ILC) map based on the five year WMAP data.

Figure 13. The temperature (TT) and temperature-polarization correlation (TE)
power spectra based on the five year WMAP data. The addition of two years of
data provides more sensitive measurements of the third peak in the TT and the
high-l TE spectra, especially the second trough.

our earlier estimates based on pseudo-Cl methods (Nolta et al.
2009). The TB, EB, and BB spectra remain consistent with zero.

The cosmological implications of the five-year WMAP data
are discussed in detail in Dunkley et al. (2009) and Komatsu et al.
(2009). The now-standard cosmological model: a flat universe
dominated by vacuum energy and dark matter, seeded by nearly
scale-invariant, adiabatic, Gaussian random-phase fluctuations,
continues to fit the five-year data. WMAP has now determined

the key parameters of this model to high precision; a summary
of the five-year parameter results is given in Table 7. The
most notable improvements are the measurements of the dark
matter density, Ωch

2, and the amplitude of matter fluctuations
today, σ8. The former is determined with 6% uncertainty using
WMAP data only (Dunkley et al. 2009), and with 3% uncertainty
when WMAP data are combined with BAO and SNe constraints
(Komatsu et al. 2009). The latter is measured to 5% with WMAP
data, and to 3% when combined with other data. The redshift
of reionization is zreion = 11.0 ± 1.4, if the universe were
reionized instantaneously. The 2σ lower limit is zreion > 8.2, and
instantaneous reionization at zreion = 6 is rejected at 3.5σ . The
WMAP data continue to favor models with a tilted primordial
spectrum, ns = 0.963+0.014

−0.015. Dunkley et al. (2009) discuss how
the ΛCDM model continues to fit a host of other astronomical
data as well.

Moving beyond the standard ΛCDM model, when WMAP
data are combined with BAO and SNe observations (Komatsu
et al. 2009), we find no evidence for running in the spectral
index of scalar fluctuations, dns/d ln k = −0.028 ± 0.020
(68% CL). The new limit on the tensor-to-scalar ratio is
r < 0.22 (95% CL), and we obtain tight, simultaneous limits
on the (constant) dark energy equation of state and the spatial
curvature of the universe: −0.14 < 1 + w < 0.12 (95% CL)
and −0.0179 < Ωk < 0.0081 (95% CL). The angular power
spectrum now exhibits the signature of the cosmic neutrino
background: the number of relativistic degrees of freedom,
expressed in units of the effective number of neutrino species,
is found to be Neff = 4.4 ± 1.5 (68% CL), consistent with the
standard value of 3.04. Models with Neff = 0 are disfavored
at >99.5% confidence. A summary of the key cosmological
parameter values is given in Table 7, where we provide estimates
using WMAP data alone and WMAP data combined with BAO
and SNe observations. A complete tabulation of all parameter
values for each model and data set combination we studied is
available on LAMBDA.

The new data also place more stringent limits on devia-
tions from Gaussianity, parity violations, and the amplitude of
isocurvature fluctuations (Komatsu et al. 2009). For example,
new limits on physically motivated primordial non-Gaussianity
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Fig. 1.— Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657−558, with the white
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours
in both panels are the weak lensing κ reconstruction with the outer contour level at κ = 0.16 and increasing in steps of 0.07. The white
contours show the errors on the positions of the κ peaks and correspond to 68.3%, 95.5%, and 99.7% confidence levels. The blue +s show
the location of the centers used to measure the masses of the plasma clouds in Table 2.

nated by collisionless dark matter, the potential will trace
the distribution of that component, which is expected
to be spatially coincident with the collisionless galax-
ies. Thus, by deriving a map of the gravitational po-
tential, one can discriminate between these possibilities.
We published an initial attempt at this using an archival
VLT image (Clowe et al. 2004); here we add three addi-
tional optical image sets which allows us to increase the
significance of the weak lensing results by more than a
factor of 3.

In this paper, we measure distances at the redshift of
the cluster, z = 0.296, by assuming an Ωm = 0.3, λ =
0.7, H0 = 70km/s/Mpc cosmology which results in 4.413
kpc/′′ plate-scale. None of the results of this paper are
dependent on this assumption; changing the assumed
cosmology will result in a change of the distances and
absolute masses measured, but the relative masses of
the various structures in each measurement remain un-
changed.

2. METHODOLOGY AND DATA

We construct a map of the gravitational poten-
tial using weak gravitational lensing (Mellier 1999;
Bartelmann & Schneider 2001), which measures the dis-
tortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass.
This deflection stretches the image of the galaxy pref-
erentially in the direction perpendicular to that of the
cluster’s center of mass. The imparted ellipticity is typi-
cally comparable to or smaller than that intrinsic to the
galaxy, and thus the distortion is only measurable statis-
tically with large numbers of background galaxies. To do
this measurement, we detect faint galaxies on deep op-
tical images and calculate an ellipticity from the second
moment of their surface brightness distribution, correct-
ing the ellipticity for smearing by the point spread func-
tion (corrections for both anisotropies and smearing are
obtained using an implementation of the KSB technique
(Kaiser et al. 1995) discussed in Clowe et al. (2006)).
The corrected ellipticities are a direct, but noisy, mea-
surement of the reduced shear "g = "γ/(1 − κ). The shear
"γ is the amount of anisotropic stretching of the galaxy
image. The convergence κ is the shape-independent in-
crease in the size of the galaxy image. In Newtonian

gravity, κ is equal to the surface mass density of the lens
divided by a scaling constant. In non-standard gravity
models, κ is no longer linearly related to the surface den-
sity but is instead a non-local function that scales as the
mass raised to a power less than one for a planar lens,
reaching the limit of one half for constant acceleration
(Mortlock & Turner 2001; Zhao et al. 2006). While one
can no longer directly obtain a map of the surface mass
density using the distribution of κ in non-standard grav-
ity models, the locations of the κ peaks, after adjusting
for the extended wings, correspond to the locations of
the surface mass density peaks.

Our goal is thus to obtain a map of κ. One can combine
derivatives of "g to obtain (Schneider 1995; Kaiser 1995)

∇ ln(1−κ) =
1

1 − g2
1 − g2

2

(

1 + g1 g2
g2 1 − g1

) (

g1,1 + g2,2
g2,1 − g1,2

)

,

which is integrated over the data field and converted into
a two-dimensional map of κ. The observationally un-
constrained constant of integration, typically referred to
as the “mass-sheet degeneracy,” is effectively the true
mean of ln(1−κ) at the edge of the reconstruction. This
method does, however, systematically underestimate κ
in the cores of massive clusters. This results in a slight
increase to the centroiding errors of the peaks, and our
measurements of κ in the peaks of the components are
only lower bounds.

For 1E0657−558, we have accumulated an exception-
ally rich optical dataset, which we will use here to mea-
sure "g. It consists of the four sets of optical images shown
in Table 1 and the VLT image set used in Clowe et al.
(2004); the additional images significantly increase the
maximum resolution obtainable in the κ reconstructions
due to the increased number of background galaxies,
particularly in the area covered by the ACS images,
with which we measure the reduced shear. We reduce
each image set independently and create galaxy cata-
logs with 3 passband photometry. The one exception
is the single passband HST pointing of main cluster,
for which we measure colors from the Magellan images.
Because it is not feasible to measure redshifts for all
galaxies in the field, we select likely background galax-
ies using magnitude and color cuts (m814 > 22 and not
in the rhombus defined by 0.5 < m606 − m814 < 1.5,

Multiple astrophysical indications 
of cold dark matter

modification of galactic rotation 
curves

imprints on microwave background 

apparent extra collisionless matter 
from lensing measurements
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Figure 12. The foreground-reduced Internal Linear Combination (ILC) map based on the five year WMAP data.

Figure 13. The temperature (TT) and temperature-polarization correlation (TE)
power spectra based on the five year WMAP data. The addition of two years of
data provides more sensitive measurements of the third peak in the TT and the
high-l TE spectra, especially the second trough.

our earlier estimates based on pseudo-Cl methods (Nolta et al.
2009). The TB, EB, and BB spectra remain consistent with zero.

The cosmological implications of the five-year WMAP data
are discussed in detail in Dunkley et al. (2009) and Komatsu et al.
(2009). The now-standard cosmological model: a flat universe
dominated by vacuum energy and dark matter, seeded by nearly
scale-invariant, adiabatic, Gaussian random-phase fluctuations,
continues to fit the five-year data. WMAP has now determined

the key parameters of this model to high precision; a summary
of the five-year parameter results is given in Table 7. The
most notable improvements are the measurements of the dark
matter density, Ωch

2, and the amplitude of matter fluctuations
today, σ8. The former is determined with 6% uncertainty using
WMAP data only (Dunkley et al. 2009), and with 3% uncertainty
when WMAP data are combined with BAO and SNe constraints
(Komatsu et al. 2009). The latter is measured to 5% with WMAP
data, and to 3% when combined with other data. The redshift
of reionization is zreion = 11.0 ± 1.4, if the universe were
reionized instantaneously. The 2σ lower limit is zreion > 8.2, and
instantaneous reionization at zreion = 6 is rejected at 3.5σ . The
WMAP data continue to favor models with a tilted primordial
spectrum, ns = 0.963+0.014

−0.015. Dunkley et al. (2009) discuss how
the ΛCDM model continues to fit a host of other astronomical
data as well.

Moving beyond the standard ΛCDM model, when WMAP
data are combined with BAO and SNe observations (Komatsu
et al. 2009), we find no evidence for running in the spectral
index of scalar fluctuations, dns/d ln k = −0.028 ± 0.020
(68% CL). The new limit on the tensor-to-scalar ratio is
r < 0.22 (95% CL), and we obtain tight, simultaneous limits
on the (constant) dark energy equation of state and the spatial
curvature of the universe: −0.14 < 1 + w < 0.12 (95% CL)
and −0.0179 < Ωk < 0.0081 (95% CL). The angular power
spectrum now exhibits the signature of the cosmic neutrino
background: the number of relativistic degrees of freedom,
expressed in units of the effective number of neutrino species,
is found to be Neff = 4.4 ± 1.5 (68% CL), consistent with the
standard value of 3.04. Models with Neff = 0 are disfavored
at >99.5% confidence. A summary of the key cosmological
parameter values is given in Table 7, where we provide estimates
using WMAP data alone and WMAP data combined with BAO
and SNe observations. A complete tabulation of all parameter
values for each model and data set combination we studied is
available on LAMBDA.

The new data also place more stringent limits on devia-
tions from Gaussianity, parity violations, and the amplitude of
isocurvature fluctuations (Komatsu et al. 2009). For example,
new limits on physically motivated primordial non-Gaussianity
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Fig. 1.— Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657−558, with the white
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours
in both panels are the weak lensing κ reconstruction with the outer contour level at κ = 0.16 and increasing in steps of 0.07. The white
contours show the errors on the positions of the κ peaks and correspond to 68.3%, 95.5%, and 99.7% confidence levels. The blue +s show
the location of the centers used to measure the masses of the plasma clouds in Table 2.

nated by collisionless dark matter, the potential will trace
the distribution of that component, which is expected
to be spatially coincident with the collisionless galax-
ies. Thus, by deriving a map of the gravitational po-
tential, one can discriminate between these possibilities.
We published an initial attempt at this using an archival
VLT image (Clowe et al. 2004); here we add three addi-
tional optical image sets which allows us to increase the
significance of the weak lensing results by more than a
factor of 3.

In this paper, we measure distances at the redshift of
the cluster, z = 0.296, by assuming an Ωm = 0.3, λ =
0.7, H0 = 70km/s/Mpc cosmology which results in 4.413
kpc/′′ plate-scale. None of the results of this paper are
dependent on this assumption; changing the assumed
cosmology will result in a change of the distances and
absolute masses measured, but the relative masses of
the various structures in each measurement remain un-
changed.

2. METHODOLOGY AND DATA

We construct a map of the gravitational poten-
tial using weak gravitational lensing (Mellier 1999;
Bartelmann & Schneider 2001), which measures the dis-
tortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass.
This deflection stretches the image of the galaxy pref-
erentially in the direction perpendicular to that of the
cluster’s center of mass. The imparted ellipticity is typi-
cally comparable to or smaller than that intrinsic to the
galaxy, and thus the distortion is only measurable statis-
tically with large numbers of background galaxies. To do
this measurement, we detect faint galaxies on deep op-
tical images and calculate an ellipticity from the second
moment of their surface brightness distribution, correct-
ing the ellipticity for smearing by the point spread func-
tion (corrections for both anisotropies and smearing are
obtained using an implementation of the KSB technique
(Kaiser et al. 1995) discussed in Clowe et al. (2006)).
The corrected ellipticities are a direct, but noisy, mea-
surement of the reduced shear "g = "γ/(1 − κ). The shear
"γ is the amount of anisotropic stretching of the galaxy
image. The convergence κ is the shape-independent in-
crease in the size of the galaxy image. In Newtonian

gravity, κ is equal to the surface mass density of the lens
divided by a scaling constant. In non-standard gravity
models, κ is no longer linearly related to the surface den-
sity but is instead a non-local function that scales as the
mass raised to a power less than one for a planar lens,
reaching the limit of one half for constant acceleration
(Mortlock & Turner 2001; Zhao et al. 2006). While one
can no longer directly obtain a map of the surface mass
density using the distribution of κ in non-standard grav-
ity models, the locations of the κ peaks, after adjusting
for the extended wings, correspond to the locations of
the surface mass density peaks.

Our goal is thus to obtain a map of κ. One can combine
derivatives of "g to obtain (Schneider 1995; Kaiser 1995)

∇ ln(1−κ) =
1

1 − g2
1 − g2

2

(

1 + g1 g2
g2 1 − g1

) (

g1,1 + g2,2
g2,1 − g1,2

)

,

which is integrated over the data field and converted into
a two-dimensional map of κ. The observationally un-
constrained constant of integration, typically referred to
as the “mass-sheet degeneracy,” is effectively the true
mean of ln(1−κ) at the edge of the reconstruction. This
method does, however, systematically underestimate κ
in the cores of massive clusters. This results in a slight
increase to the centroiding errors of the peaks, and our
measurements of κ in the peaks of the components are
only lower bounds.

For 1E0657−558, we have accumulated an exception-
ally rich optical dataset, which we will use here to mea-
sure "g. It consists of the four sets of optical images shown
in Table 1 and the VLT image set used in Clowe et al.
(2004); the additional images significantly increase the
maximum resolution obtainable in the κ reconstructions
due to the increased number of background galaxies,
particularly in the area covered by the ACS images,
with which we measure the reduced shear. We reduce
each image set independently and create galaxy cata-
logs with 3 passband photometry. The one exception
is the single passband HST pointing of main cluster,
for which we measure colors from the Magellan images.
Because it is not feasible to measure redshifts for all
galaxies in the field, we select likely background galax-
ies using magnitude and color cuts (m814 > 22 and not
in the rhombus defined by 0.5 < m606 − m814 < 1.5,
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Indication of thermal relic, weakly 
interacting, particles beyond the 
standard model ?

The Road to Zeptobarn Dark Matter and Beyond  Sunil Golwala

• A WIMP ! is like a massive neutrino: produced when T >> m! via pair annihilation/

creation.  Reaction maintains thermal equilibrium.

• If interaction rates high enough, comoving density drops as exp(!m! / T) as T drops 
below m! : annihilation continues, production becomes suppressed.

• But, weakly interacting ! will 

“freeze out” before total annihilation if

i.e., if annihilation too slow to keep
up with Hubble expansion

• Leaves a relic abundance:

for m! = O(100 GeV)

! if m! and "ann determined by

new weak-scale physics, then #! is O(1)

WIMPs
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on-ramps to the talk

• a motivation for electroweak-SU(2) charged 
dark matter

• QCD anatomy of dark matter direct detection

• ( formalism in heavy particle effective theories )
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Will find a general mechanism that can lead to stable particles, 

 ● M ~ TeV for particle to be significant component of thermal relic 
dark matter

 ● predictive scattering cross section on nucleon in limit M >> mW 

technical part of talk: 
compute this universal cross 
section in terms of Standard 
Model parameters

Parameter Value Reference

|Vtd| ⇤ 0 -

|Vts| ⇤ 0 -

|Vtb| ⇤ 1 -

mu/md 0.49(13) [20]

ms/md 19.5(2.5) [20]

�lat
�N 0.047(9)GeV [21]

�lat
s 0.050(8)GeV [22]

��N 0.064(7)GeV [23]

�0 0.036(7)GeV [24]

mW 80.4GeV [20]

mt 172 GeV [15]

mb 4.75 GeV [15]

mc 1.4 GeV [15]

mN 0.94 GeV -

�s(mZ) 0.118 [20]

�2(mZ) 0.0338 [20]

Table 1: Inputs to the numerical analysis.

We consider “traditional” values ��N = 64 ± 7MeV [23] and �0 = 36 ± 7MeV [24], but
investigate also the lattice determinations, �lat

�N = 47±9MeV [21] and �lat
s = 50±8MeV [22].7

We adopt PDG values [20] for light-quark mass ratios. A summary of numerical inputs is
presented in Table 1.

6.1.2 Spin two

The matrix elements of spin-two operators can be identified as

f (2)
q,p (µ) =

⇥ 1

0

dx x[q(x, µ) + q̄(x, µ)] , (30)

where q(x, µ) and q̄(x, µ) are parton distribution functions evaluated at scale µ. Neglecting
power corrections, the sum of spin two operators in (20) is the traceless part of the QCD

energy momentum tensor, hence independent of scale we have f (2)
G,p(µ) ⌅ 1�

�
q=u,d,s f

(2)
q,p (µ).

Using approximate isospin symmetry we set

f (2)
u,n = f (2)

d,p , f (2)
d,n = f (2)

u,p , f (2)
s,n = f (2)

s,p . (31)

7The latter quantity arises from a naive averaging of �s = 31 ± 15MeV [21] and �s = 59 ± 10MeV [25].
See also [26, 27, 28].

10

mh ?

A nontrivial problem 
involving multiple scales

5

A prototype for systematic computation of QCD effects in 
DM - nucleus scattering
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Recall axion: UV completions realizing Peccei Quinn 
mechanism generically involve fermions coupled to color SU(3) 

old gluon

new scalar new quark

L = |⇧µ⇥|2 + q̄(i⇧/ + gA/ )q � V (⇥)� �⇥q̄LqR + h.c.

a(x) � a(x) + c

L =
1

2
(⇤µa)

2 +
a(x)

f
�µ⇥⇤⌅F a

µ⇥F
a
⇤⌅ + . . .

Low energy:

Richard  Hill                    University of Chicago                                      Universal behavior in heavy, weakly interacting DM6

Are there (beyond SM) Dirac fermions coupled to SM 
gauge fields (e.g. axion models: SU(3)) ?  



Consider confined Dirac fermions, coupled to weak SU(2)

⇥ � S⇥C = Si�2⇥�

W a �W a

=�

Call this discrete symmetry “G parity” after (ungauged) QCD operation.   
Consider lightest G-odd particle: Lorentz scalar,  weak SU(2) triplet

L�L

�ta� = S†taS ��a�

2
= (i�2)†

�a

2
(i�2), a = 1, 2, 3

SU(2) is a special group: all representations are self-conjugate:

e.g.

Implies an invariance of the action:

Weakly interacting stable pions

�L = �̄(i⇤/ + g2W/
ata + ĝÂ/ )�

old SU(2) gauge bosons

new “quarks” and 
“gluons”

Richard  Hill                    University of Chicago                                      Universal behavior in heavy, weakly interacting DM7



Mass spectrum 

Masses induced by radiative corrections, 
proportional to total isospin

m2
�(JQ) � J(J + 1)�2�2
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Mass spectrum 

Masses induced by radiative corrections, 
proportional to total isospin
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mass splitting
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Decay of excited states

excited G-even states decay to SM 

W

W

�(2)

excited G-odd states decay to LGP + SM
W

W

�(3)

�(1)

�(2)

�(2)

charged decay rate

�(⇤(1,±1) ⇤ ⇤(10) + �±) =
4G2

F

�
⇥2

�
⇥2 �m2

�f2
� ⇥ 1/(5 cm)

⇒ interesting collider signature

5 cm
QCD �±

invisible
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Found a mechanism that generates an isotriplet of real scalars 

If the neutral component is a significant component of thermal relic 
dark matter, can estimate it’s mass in the ~TeV range

Universal properties emerge in the limit M >> mW, described by the 
relevant heavy  particle effective theory

+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)
2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)
2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (21)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

scalars will become relevant at order 1/m4
W in nuclear scattering computations; similarly, we

restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators
with derivatives acting on ⇧v or inolving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⇧(0)�
v ⇧(0)

v

⇧ ⌥

q

⇤
c(0)
1q O(0)

1q + c(2)
1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)

2 O(0)
2 + c(2)

2 vµv⇧O
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⌃
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where we have chosen to work in a basis of QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)2 . (19)

Here A{µB⇧} ⇥ (AµB⇧+A⇧Bµ)/2 denotes symmetrization. We employ dimensional regulariza-
tion with d = 4�2⇤ the spacetime dimension. We use the background field method for gluons
in the e�ective theory thus ignoring gauge-variant operators, and assume that appropriate
field redefinitions are employed to eliminate operators that vanish by leading order equations
of motion. We note below that the matrix elements of gluonic operators, O(S)

2 are numerically
large (representing a substantial contribution of gluons to the energy and momentum of the

nucleon). We count the hadronic matrix elements �sO
(S)
2 and O1q as the same order, and thus

require the coe⌅cients c(S)
2 through O(�s) and c(S)

1q through O(�0
s).

4 Weak scale matching

The matching conditions onto quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mW ⇤ mh ⇤ mt are obtained from the diagrams in Fig. (1):

c(0)
1U(µt) = C

⇤
� 1

x2
h

⌅
, c(0)

1D(µt) = C
⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)
1U(µt) = C

⇤
2

3

⌅
, c(2)

1D(µt) = C
⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (20)
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.
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quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

scalars will become relevant at order 1/m4
W in nuclear scattering computations; similarly, we

restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators
with derivatives acting on ⇧v or inolving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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where we have chosen to work in a basis of QCD operators of definite spin,
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Here A{µB⇧} ⇥ (AµB⇧+A⇧Bµ)/2 denotes symmetrization. We employ dimensional regulariza-
tion with d = 4�2⇤ the spacetime dimension. We use the background field method for gluons
in the e�ective theory thus ignoring gauge-variant operators, and assume that appropriate
field redefinitions are employed to eliminate operators that vanish by leading order equations
of motion. We note below that the matrix elements of gluonic operators, O(S)

2 are numerically
large (representing a substantial contribution of gluons to the energy and momentum of the

nucleon). We count the hadronic matrix elements �sO
(S)
2 and O1q as the same order, and thus

require the coe⌅cients c(S)
2 through O(�s) and c(S)

1q through O(�0
s).

4 Weak scale matching

The matching conditions onto quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mW ⇤ mh ⇤ mt are obtained from the diagrams in Fig. (1):
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⌅
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1D(µt) = C
⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)
1U(µt) = C

⇤
2

3

⌅
, c(2)

1D(µt) = C
⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
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Multiple scales: 

Consider effective theory at each scale: 

mW � mh � mt

mb , mc

�QCD

Renormalization analysis required to sum 
large logarithms

�s(µ) log
mt

µ
� �s(1GeV) log

170GeV

1GeV

M
�v , SM

�(Q=0)
v , u, d, s, c, b, g
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{
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Electroweak symmetric theory

Operator basis 

gauge groups. We start by investigating the e�ective theory at scales mW ⌅ µ ⌅ M , with
unbroken electroweak gauge symmetry.

2.1 Lagrangian

We work in terms of an e�ective heavy scalar field ⇤v(x), in the isospin J representation of
SU(2). The covariant derivative is Dµ = ⌥µ � ig2W a

µ t
a
J . and Wµ⌅ ⇤ i[Dµ, D⌅ ]/g2 ⇤ W a

µ⌅t
a
J is

the associated field strength. We let g1, g2, g3 ⇤ g denote the Standard Model U(1)Y , SU(2)W
and SU(3)c gauge coupling constants, respectively. A typical heavy particle momentum can
be decomposed as

pµ = Mvµ + kµ , (2)

where vµ is a velocity, v2 = 1, and kµ is a residual momentum. The basis of operators involves
the perpendicular derivative,

Dµ
⇤ ⇤ Dµ � vµv ·D . (3)

Through O(1/M3), the scalar heavy particle e�ective theory in the one-heavy-particle sector
takes the form,

L⌥ = ⇤�
v

�
iv ·D � c1

D2
⇤

2M
+ c2

D4
⇤

8M3
+ g2cD

v�[D⇥
⇤,W�⇥]

8M2
+ ig2cM

{D�
⇤, [D

⇥
⇤,W�⇥]}

16M3

+ g22cA1
W�⇥W�⇥

16M3
+ g22cA2

v�v⇥W µ�Wµ⇥

16M3
+ g22cA3

Tr(W �⇥W�⇥)

16M3
+ g22cA4

Tr(v�v⇥W µ�Wµ⇥)

16M3

+ g22c
⇥
A1

�µ⌅⇧⌃Wµ⌅W⇧⌃

16M3
+ g22c

⇥
A2

�µ⌅⇧⌃v�vµW⌅�W⇧⌃

16M3
+ g22c

⇥
A3

�µ⌅⇧⌃Tr(Wµ⌅W⇧⌃)

16M3

+ g22c
⇥
A4

�µ⌅⇧⌃v�vµTr(W⌅�W⇧⌃)

16M3
+ . . .

⇥
⇤v , (4)

where we have employed appropriate field redefinitions to remove possible redundant operators
involving factors of v ·D acting on ⇤v. Note that the operators with coe⇤cients c⇥A1 through c⇥A4

violate parity and time reversal symmetries.1 For the e�ective theory describing a fundamental
heavy scalar particle, we have c1 = c2 = cA1 = 1 and cD = cM = cA2 = cA3 = cA4 = c⇥A1 =
c⇥A2 = c⇥A3 = c⇥A4 = 0 at tree level [4]. We find that the low-energy manifestation of relativistic
invariance (“reparameterization invariance” [5, 6]) implies the exact relations,

c1 = c2 = 1 , cM = cD . (5)

Section 2.2 provides a nontrivial illustration of the latter relation.
The complete lagrangian including Standard Model particles and interactions can be writ-

ten
L = L⌥ + LSM + L⌥,SM . (6)

1Additional CPT violating operators at O(1/M2) and O(1/M3) are constrained by reparameterization
invariance to have vanishing coe�cient.

2

�v(x) , vµ , D�µ = Dµ � vµv ·D
Building blocks: 

Everything not forbidden is allowed: 

Richard  Hill                    University of Chicago                                      Universal behavior in heavy, weakly interacting DM12



Electroweak symmetric theory

Operator basis 

gauge groups. We start by investigating the e�ective theory at scales mW ⌅ µ ⌅ M , with
unbroken electroweak gauge symmetry.

2.1 Lagrangian

We work in terms of an e�ective heavy scalar field ⇤v(x), in the isospin J representation of
SU(2). The covariant derivative is Dµ = ⌥µ � ig2W a

µ t
a
J . and Wµ⌅ ⇤ i[Dµ, D⌅ ]/g2 ⇤ W a

µ⌅t
a
J is

the associated field strength. We let g1, g2, g3 ⇤ g denote the Standard Model U(1)Y , SU(2)W
and SU(3)c gauge coupling constants, respectively. A typical heavy particle momentum can
be decomposed as

pµ = Mvµ + kµ , (2)

where vµ is a velocity, v2 = 1, and kµ is a residual momentum. The basis of operators involves
the perpendicular derivative,

Dµ
⇤ ⇤ Dµ � vµv ·D . (3)

Through O(1/M3), the scalar heavy particle e�ective theory in the one-heavy-particle sector
takes the form,

L⌥ = ⇤�
v

�
iv ·D � c1

D2
⇤

2M
+ c2

D4
⇤

8M3
+ g2cD

v�[D⇥
⇤,W�⇥]

8M2
+ ig2cM

{D�
⇤, [D

⇥
⇤,W�⇥]}

16M3

+ g22cA1
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16M3
+ g22cA2
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16M3
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⇥
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⇥
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16M3
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⇥
⇤v , (4)

where we have employed appropriate field redefinitions to remove possible redundant operators
involving factors of v ·D acting on ⇤v. Note that the operators with coe⇤cients c⇥A1 through c⇥A4

violate parity and time reversal symmetries.1 For the e�ective theory describing a fundamental
heavy scalar particle, we have c1 = c2 = cA1 = 1 and cD = cM = cA2 = cA3 = cA4 = c⇥A1 =
c⇥A2 = c⇥A3 = c⇥A4 = 0 at tree level [4]. We find that the low-energy manifestation of relativistic
invariance (“reparameterization invariance” [5, 6]) implies the exact relations,

c1 = c2 = 1 , cM = cD . (5)

Section 2.2 provides a nontrivial illustration of the latter relation.
The complete lagrangian including Standard Model particles and interactions can be writ-

ten
L = L⌥ + LSM + L⌥,SM . (6)

1Additional CPT violating operators at O(1/M2) and O(1/M3) are constrained by reparameterization
invariance to have vanishing coe�cient.

2

�v(x) , vµ , D�µ = Dµ � vµv ·D
Building blocks: 

Everything not forbidden is allowed: 
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Standard model interactions 

All of these are suppressed by 1/M

Here LSM is the usual Standard Model lagrangian, and by convention we have included interac-
tions withWµ in L⌥. So far our discussion applies to a general irreducible SU(2) representation
for the heavy scalar field ⇧v. Specializing to the case of a real scalar field, necessarily with
integer isospin, the e�ective theory is invariant under2

vµ ⌅ �vµ , ⇧v ⌅ ⇧�
v . (7)

It is straightforward to verify that all interactions in L⌥ are invariant under this transformation.
In the one-heavy-particle sector, the remaining terms involving the Higgs field H, gauge

fields, and fermions are (H̃ ⇤ i⌅2H�)

L⌥,SM = ⇧�
v

�
cH

H†H

M
+ · · ·+ cQ

taJQ̄L⌅av/QL

M2
+ cX

iQ̄L⌅a�µQL{taJ , Dµ}
2M3

+ cDQ
Q̄Lv/ iv ·DQL

M3

+ cDu
ūRv/ iv ·DuR

M3
+ cDd

d̄Rv/ iv ·DdR
M3

+ cHd
Q̄LHdR + h.c.

M3
+ cHu

Q̄LH̃uR + h.c.

M3

+ g23c
(G)
A1

GA�⇥GA
�⇥

16M3
+ g23c

(G)
A2

v�v⇥GAµ�GA
µ⇥

16M3
+ g23c

(G) ⇥
A1

⇥µ⌅⇧⌃GA
µ⌅G

A
⇧⌃

16M3
+ g23c

(G) ⇥
A2

⇥µ⌅⇧⌃v�vµGA
⌅�G

A
⇧⌃

16M3

+ . . .

⇥
⇧v . (8)

Terms odd under (7) have been omitted. Subleading terms containing only H, ⇧v and their
covariant derivatives are represented by the first ellipsis in (8). Terms bilinear in lepton fields,
and terms bilinear in the hypercharge gauge field are also present in L⌥,SM but have not been
written explicitly. Repeated indices a = 1..3 and A = 1..8 imply a sum over gauge generators.
Reparameterization invariance implies

cQ = cX . (9)

2.2 Sample matching calculation

As an illustration of the construction and matching conditions for the heavy particle lagrangian
L⌥, consider the case of a fundamental scalar, ignoring scalar self interactions (i.e., ⇧4 terms).
For the matching of the terms containing a single gauge field, we consider the full theory result
for the W⇧⇧ amputated three point function,

q

p, i p⇥, j

µ, a

= ig2(p+ p⇥)µF (q2)(taJ)ji , (10)

where q = p⇥ � p, and F (q2) is a model-dependent form factor. Setting p2 = p⇥2 = M2,
vµ = (1, 0, 0, 0), the matching conditions for scalar scattering from a µ = 0 or µ = i gauge

2For a real scalar field, the e�ective theory is obtained by introducing vµ in the field redefinition �(x) =
e�imv·x�v(x)/

�
M = eimv·x�⇤

v(x)/
�
M = �⇤(x).

3

Reparameterization invariance: 

Here LSM is the usual Standard Model lagrangian, and by convention we have included interac-
tions withWµ in L⌥. So far our discussion applies to a general irreducible SU(2) representation
for the heavy scalar field ⇧v. Specializing to the case of a real scalar field, necessarily with
integer isospin, the e�ective theory is invariant under2

vµ ⌅ �vµ , ⇧v ⌅ ⇧�
v . (7)

It is straightforward to verify that all interactions in L⌥ are invariant under this transformation.
In the one-heavy-particle sector, the remaining terms involving the Higgs field H, gauge

fields, and fermions are (H̃ ⇤ i⌅2H�)
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⇧⌃
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⇧v . (8)

Terms odd under (7) have been omitted. Subleading terms containing only H, ⇧v and their
covariant derivatives are represented by the first ellipsis in (8). Terms bilinear in lepton fields,
and terms bilinear in the hypercharge gauge field are also present in L⌥,SM but have not been
written explicitly. Repeated indices a = 1..3 and A = 1..8 imply a sum over gauge generators.
Reparameterization invariance implies

cQ = cX . (9)

2.2 Sample matching calculation

As an illustration of the construction and matching conditions for the heavy particle lagrangian
L⌥, consider the case of a fundamental scalar, ignoring scalar self interactions (i.e., ⇧4 terms).
For the matching of the terms containing a single gauge field, we consider the full theory result
for the W⇧⇧ amputated three point function,

q

p, i p⇥, j

µ, a

= ig2(p+ p⇥)µF (q2)(taJ)ji , (10)

where q = p⇥ � p, and F (q2) is a model-dependent form factor. Setting p2 = p⇥2 = M2,
vµ = (1, 0, 0, 0), the matching conditions for scalar scattering from a µ = 0 or µ = i gauge

2For a real scalar field, the e�ective theory is obtained by introducing vµ in the field redefinition �(x) =
e�imv·x�v(x)/

�
M = eimv·x�⇤

v(x)/
�
M = �⇤(x).

3
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Low energy theory

3.1 Mass correction from electroweak symmetry breaking

We may evaluate the heavy scalar self energy to obtain mass corrections,

�i�(p) =
W

p
+

Z
+

⇥

+ . . . . (14)

The shift in mass due to electroweak symmetry breaking appears as a nonvanishing value of
�(p) at v ·p = 0. We find at leading order in the 1/M expansion, and first order in perturbation
theory,

⇤M = �2mW

�
�1

2
J2 + sin2 ⌅W

2
J2
3

⇥
. (15)

In particular, with Q = J3 + Y = J3 for Y = 0, the mass of each charged state is lifted
proportional to its squared charge relative to the neutral component,

M(Q) �M(Q=0) = �2Q
2mW sin2 ⌅W

2
+O(1/M) ⇤ (170MeV)Q2 . (16)

Subleading corrections can be similarly evaluated in the e⇥ective theory. Since no additional
operators appear at O(1/M0), the result (16) is model independent.4

3.2 Operator basis

The e⇥ective theory after electroweak symmetry breaking will include: the heavy scalar QED
theory for each of the electric charge eigenstates, with mass determined as in (15);5 the
Standard Model lagrangian with W,Z, h, t integrated out; and interactions,

L = L�0 + LSM + L�0,SM + . . . , (17)

where the ellipsis denotes terms containing electrically charged heavy scalars. For the electri-
cally neutral scalar,

L�0 = ⇧�
v,Q=0

⇤
iv ·  �  2

⇥
2M(Q=0)

+O(1/m3
W )

⌅
⇧v,Q=0 . (18)

Note that enforcing the reality condition (7) implies the vanishing of cD (= cM).
Interactions with Standard Model fields begin at order 1/m3

W . We restrict attention to
quark and gluon operators (neglecting lepton and photon operators) and again focus on the
neutral ⇧v,Q=0 component, dropping the Q = 0 subscript in the following. Mixing with charged
scalars will become relevant at order 1/m4

W in nuclear scattering computations; similarly, we
restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators

4The mass splitting (16) appears in limits of particular models, e.g. [1, 7, 8].
5We define the pole mass to include the contributions induced by electroweak symmetry breaking, as

opposed to introducing residual mass terms for di�erent charge eigenstates [9].
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bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators

4The mass splitting (16) appears in limits of particular models, e.g. [1, 7, 8].
5We define the pole mass to include the contributions induced by electroweak symmetry breaking, as

opposed to introducing residual mass terms for di�erent charge eigenstates [9].
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quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

Richard  Hill                    University of Chicago                                      Universal behavior in heavy, weakly interacting DM

Operator basis 

Heavy neutral scalar: 

SM interactions:

Convenient to choose basis of definite spin

cD=0 (reality constraint)

14



quark operators

gluon operators

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6
+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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. (22)

There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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Full theory side:
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Here

[cε] =
i
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d

2
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2 W loop

Using the heavy particle Feynman rules, and including uncrossed and crossed diagrams (charge
+ and charge − intermediate heavy particle), we have
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Note that gauge-dependent factors in the W propagator will lead to numerator factors involv-
ing v · L, giving vanishing contribution.
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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quark propagator in background gluon field

1 Quark loop

Let us define the two-point function

Πνµ(L) =
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∫
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S̃(p) ≡
∫
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and the superscript denotes the (mass eigenstate) quark flavor. Let us use the weak coupling
expansion,

iS(p) =
i

p/ −m
+ g

∫

(dq)
i

p/ −m
iA/ (q)

i

p/ − q/ −m

+ g2
∫

(dq1)(dq2)
i

p/ −m
iA/ (q1)

i

p/ − q/ 1 −m
iA/ (q2)

i

p/ − q/ 1 − q/ 2 −m
+ . . . ,

iS̃(p) =
i

p/ −m
+ g

∫

(dq)
i

p/ + q/ −m
iA/ (q)

i

p/ −m

+ g2
∫

(dq1)(dq2)
i

p/ + q/ 1 + q/ 2 −m
iA/ (q1)

i

p/ + q/ 2 − q/ 1 −m
iA/ (q2)

i

p/ −m
+ . . . . (3)

In Fock Schwinger gauge we have

A/ (q) = taγα

∫

(dx)eiq·xAa
α(x)

= taγα

[

−i

2

∂

∂qρ
Ga

ρα(0)(2π)
dδd(q) + . . .

]

, (4)

where the ellipsis denotes terms with derivatives acting on Ga
µν .

The two-gluon amplitude for both insertions on the up-quark line is

Πνµ
a =

(

g2Vud

2
√
2

)2

ig2
(

i

2

)2

Tr(tatb)Ga
ρα(0)G

b
σβ(0)

∫

(dp)
∂

∂qρ

∂

∂q′σ

1

Fock-Schwinger gauge (x.A=0) : 

vµ
�
gµµ� � (1� �)

LµLµ�

L2 � �m2
W

⇥
= vµ� +O(v · L)

Electroweak gauge invariance is immediate:

crossed and uncrossed diagrams cancel
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Effective theory side:

Ignoring quark masses, effective theory onshell loop diagrams vanish in dim.reg. 

+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (22)

There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.

7

0 =
1

�UV
� 1

�IR

After equating full theory = effective theory, all remaining divergences are UV

(can also work with finite quark masses)

�
ddL

(2�)d
f(L2) =
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Solution to RG equations

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

c(0)2 (µ) = c(0)2 (µt)
�
g [�s(µ)]
�
g [�s(µt)]

Spin 0:

Spin 2: 

c(0)1 (µ) = c(0)1 (µt)� 2[⇥m(µ)� ⇥m(µt)]
c(0)2 (µt)
�
g [�s(µt)]

5.1 Anomalous dimensions

The spin S = 0 and spin S = 2 operators mix amongst themselves, with

d

d log µ
O(S)

i = �
↵

j

⇤(S)
ij Oj , (23)

where ⇤(S)
ij are (nf + 1)⇤ (nf + 1) anomalous dimension matrices. The leading terms are

⇤̂(0) =

⇧

    ⌥

0 0
. . .

...

0 0

�2⇤�
m · · · �2⇤�

m (⇥/g)�

⌃

⌦⌦⌦⌦�
=

�s

4⇧

⇧

    ⌥

0 0
. . .

...

0 0

32 · · · 32 �2⇥0

⌃

⌦⌦⌦⌦�
+ . . . ,

⇤̂(2) =
�s

4⇧

⇧

    ⌥

64
9 �4

3
. . .

...
64
9 �4

3

�64
9 · · · �64

9
4nf

3

⌃

⌦⌦⌦⌦�
+ . . . , (24)

where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
m ⌅ g ⇤m/ g,

(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are

c(0)2 (µb) = c̃(0)2 (µb)

�
1 +

4ã

3
log

mb

µb

⇥
� ã

3
c̃(0)1b (µb)

⇤
1 + ã

�
11 +

4

3
log

mb

µb

⇥⌅
+O(ã3),

c(0)1q (µb) = c̃(0)1q (µb) +O(ã2),

c(2)2 (µb) = c̃(2)2 (µb)�
4ã

3
log

mb

µb
c̃(2)1b (µb) +O(ã2),

c(2)1q (µb) = c̃(2)1q (µb) +O(ã), (25)

where q = u, d, s, c and ã = �s(µb, nf = 5)/4⇧. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of �s in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coe⇥cients in the nf = 4 theory to
the scale µ = µc ⇧ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ⇧ 1GeV
independent of heavy quark masses.
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d

d logµ
c(S)
i =

�

j

�(S)
ji c(S)

j

5.1 Anomalous dimensions

The spin S = 0 and spin S = 2 operators mix amongst themselves, with

d

d log µ
O(S)

i = �
↵

j

⇤(S)
ij Oj , (23)

where ⇤(S)
ij are (nf + 1)⇤ (nf + 1) anomalous dimension matrices. The leading terms are

⇤̂(0) =

⇧

    ⌥

0 0
. . .

...

0 0

�2⇤�
m · · · �2⇤�

m (⇥/g)�

⌃

⌦⌦⌦⌦�
=
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4⇧

⇧
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0 0
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0 0
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where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
m ⌅ g ⇤m/ g,

(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are

c(0)2 (µb) = c̃(0)2 (µb)

�
1 +

4ã
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log
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⇥
� ã

3
c̃(0)1b (µb)

⇤
1 + ã

�
11 +
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3
log

mb

µb

⇥⌅
+O(ã3),

c(0)1q (µb) = c̃(0)1q (µb) +O(ã2),

c(2)2 (µb) = c̃(2)2 (µb)�
4ã

3
log

mb

µb
c̃(2)1b (µb) +O(ã2),

c(2)1q (µb) = c̃(2)1q (µb) +O(ã), (25)

where q = u, d, s, c and ã = �s(µb, nf = 5)/4⇧. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of �s in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coe⇥cients in the nf = 4 theory to
the scale µ = µc ⇧ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ⇧ 1GeV
independent of heavy quark masses.
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Diagonalize anomalous dimension matrix 
(familiar from PDF analysis)

As check, can evaluate spin-2 matrix elements at high 
scale (spin-0 and spin-2 decoupled)

5.1 Anomalous dimensions

The spin S = 0 and spin S = 2 operators mix amongst themselves, with

d

d log µ
O(S)

i = �
↵

j

⇤(S)
ij Oj , (23)

where ⇤(S)
ij are (nf + 1)⇤ (nf + 1) anomalous dimension matrices. The leading terms are

⇤̂(0) =

⇧
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0 0
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...
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⌃
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⇧
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9 �4
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9
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3

⌃

⌦⌦⌦⌦�
+ . . . , (24)

where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
m ⌅ g ⇤m/ g,

(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are

c(0)2 (µb) = c̃(0)2 (µb)

�
1 +

4ã

3
log

mb

µb

⇥
� ã

3
c̃(0)1b (µb)

⇤
1 + ã

�
11 +

4

3
log

mb

µb

⇥⌅
+O(ã3),

c(0)1q (µb) = c̃(0)1q (µb) +O(ã2),

c(2)2 (µb) = c̃(2)2 (µb)�
4ã

3
log
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c̃(2)1b (µb) +O(ã2),

c(2)1q (µb) = c̃(2)1q (µb) +O(ã), (25)

where q = u, d, s, c and ã = �s(µb, nf = 5)/4⇧. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of �s in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coe⇥cients in the nf = 4 theory to
the scale µ = µc ⇧ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ⇧ 1GeV
independent of heavy quark masses.
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Integrate out heavy quarks

Contribution to gluon operators familiar from h→gg

Heavy quark mass scheme enters at higher order

5.1 Anomalous dimensions

The spin S = 0 and spin S = 2 operators mix amongst themselves, with
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d log µ
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i = �
↵

j

⇤(S)
ij Oj , (23)

where ⇤(S)
ij are (nf + 1)⇤ (nf + 1) anomalous dimension matrices. The leading terms are
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where ⇥ = dg/d log µ ⌃ �⇥0�s/4⇧, ⇤m = d logmq/d log µ ⌃ �8�s/4⇧, ⇤�
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(⇥/g)� ⌅ g (⇥/g)/ g, and ⇥0 = 11 � 2
3nf . It is straightforward to include subleading terms

for ⇤̂(0) [11, 12] and ⇤̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ⇧ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are
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4ã

3
log

mb

µb

⇥
� ã
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where q = u, d, s, c and ã = �s(µb, nf = 5)/4⇧. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of �s in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coe⇥cients in the nf = 4 theory to
the scale µ = µc ⇧ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ⇧ 1GeV
independent of heavy quark masses.

8

+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)2 (µt) = C�s(µt)
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. (22)

There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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⇥
. (22)

There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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c̃2 c̃1 c1

nf=5 nf=4

{ {
Charm quark treated similarly (after running to mc)

Richard  Hill                    University of Chicago                                      Universal behavior in heavy, weakly interacting DM

[Ovrut, Schnitzer, 1982]
[Inami, Kubota, Okada, 1983]

Matching (μ=mb)

19



Hadronic matrix elements: Spin - 0 

Spin-0 operators determine contributions to nucleon mass

6 Matrix elements and cross section

Having expressed the lagrangian in terms of operators renormalized at the scale µ0 ⇤ 1GeV,
we require hadronic matrix elements evaluated at this scale.

6.1 Hadronic inputs

Let us define the zero-momentum matrix elements of renormalized operators6

⌃N |O(0)
1q |N⌥ ⇥ mNf

(0)
q,N ,

�9�s(µ)

8⇧
⌃N |O(0)

2 (µ)|N⌥ ⇥ mNf
(0)
G,N(µ) ,

⌃N |O(2)µ⇥
1q (µ)|N⌥ ⇥ 1

mN

�
kµk⇥ � gµ⇥

4
m2

N

⇥
f (2)
q,N(µ) ,

⌃N |O(2)µ⇥
2 (µ)|N⌥ ⇥ 1

mN

�
kµk⇥ � gµ⇥

4
m2

N

⇥
f (2)
G,N(µ) , (26)

where mN is the nucleon mass. Matrix elements refer to a definite (but arbitrary) spin state
of the nucleon.

6.1.1 Spin zero

We recall that the spin-0 operator matrix elements are not independent, being linked by the
relation [18]

mN = (1� ⇤m)
⌅

q

⌃N |mq q̄q|N⌥+ ⇥

2g
⌃N |(Ga

µ⇥)
2|N⌥ , (27)

derived from the trace of the QCD energy-momentum tensor. Here N = p or n and mN is the
nucleon mass. Neglecting ⇤m, O(�2

s) contributions to ⇥(g), and power corrections in the above

formula, the definitions (26) ensure that f (0)
G,N(µ) ⌅ 1�

⇤
q=u,d,s f

(0)
q,N . Corrections arising from

(27) are included in the numerical analysis.
For quark operators, define the scale-independent quantities,

�⇤N =
mu +md

2
⌃p|(ūu+ d̄d)|p⌥ , �0 =

mu +md

2
⌃p|(ūu+ d̄d� 2s̄s)|p⌥ . (28)
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mN(f
(0)
u,N + f (0)

d,N) ⌅ �⇤N , mNf
(0)
s,N =

ms

mu +md
(�⇤N � �0) = �s . (29)

6We use nonrelativistic normalization for nucleon states, ⌃N(p)|N(p�)⌥ = (2⇥)3�3(p� p�).
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⌃p|(ūu+ d̄d)|p⌥ , �0 =

mu +md

2
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significant uncertainty in this quantity

but NLO, NNLO corrections significant and are included
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Hadronic matrix elements: Spin - 2 
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Spin-2 operators determine momentum fraction carried by 
partons

6 Matrix elements and cross section

Having expressed the lagrangian in terms of operators renormalized at the scale µ0 ⇤ 1GeV,
we require hadronic matrix elements evaluated at this scale.

6.1 Hadronic inputs
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where mN is the nucleon mass. Matrix elements refer to a definite (but arbitrary) spin state
of the nucleon.
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We recall that the spin-0 operator matrix elements are not independent, being linked by the
relation [18]
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⌅

q

⌃N |mq q̄q|N⌥+ ⇥

2g
⌃N |(Ga

µ⇥)
2|N⌥ , (27)

derived from the trace of the QCD energy-momentum tensor. Here N = p or n and mN is the
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s) contributions to ⇥(g), and power corrections in the above

formula, the definitions (26) ensure that f (0)
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(0)
q,N . Corrections arising from

(27) are included in the numerical analysis.
For quark operators, define the scale-independent quantities,
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mu +md

2
⌃p|(ūu+ d̄d)|p⌥ , �0 =

mu +md

2
⌃p|(ūu+ d̄d� 2s̄s)|p⌥ . (28)

In the numerical analysis, we will neglect the small contributions proportional to |Vtd|2 and
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(0)
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(�⇤N � �0) = �s . (29)

6We use nonrelativistic normalization for nucleon states, ⌃N(p)|N(p�)⌥ = (2⇥)3�3(p� p�).
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Parameter Value Reference

|Vtd| ⇤ 0 -

|Vts| ⇤ 0 -

|Vtb| ⇤ 1 -

mu/md 0.49(13) [20]

ms/md 19.5(2.5) [20]

�lat
�N 0.047(9)GeV [21]

�lat
s 0.050(8)GeV [22]

��N 0.064(7)GeV [23]

�0 0.036(7)GeV [24]

mW 80.4GeV [20]

mt 172 GeV [15]

mb 4.75 GeV [15]

mc 1.4 GeV [15]

mN 0.94 GeV -

�s(mZ) 0.118 [20]

�2(mZ) 0.0338 [20]

Table 1: Inputs to the numerical analysis.

We consider “traditional” values ��N = 64 ± 7MeV [23] and �0 = 36 ± 7MeV [24], but
investigate also the lattice determinations, �lat

�N = 47±9MeV [21] and �lat
s = 50±8MeV [22].7

We adopt PDG values [20] for light-quark mass ratios. A summary of numerical inputs is
presented in Table 1.

6.1.2 Spin two

The matrix elements of spin-two operators can be identified as

f (2)
q,p (µ) =

⇥ 1

0

dx x[q(x, µ) + q̄(x, µ)] , (30)

where q(x, µ) and q̄(x, µ) are parton distribution functions evaluated at scale µ. Neglecting
power corrections, the sum of spin two operators in (20) is the traceless part of the QCD

energy momentum tensor, hence independent of scale we have f (2)
G,p(µ) ⌅ 1�

�
q=u,d,s f

(2)
q,p (µ).

Using approximate isospin symmetry we set

f (2)
u,n = f (2)

d,p , f (2)
d,n = f (2)

u,p , f (2)
s,n = f (2)

s,p . (31)

7The latter quantity arises from a naive averaging of �s = 31 ± 15MeV [21] and �s = 59 ± 10MeV [25].
See also [26, 27, 28].
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µ(GeV) f (2)
u,p(µ) f (2)

d,p (µ) f (2)
s,p (µ) f (2)

G,p(µ)

1.0 0.404(6) 0.217(4) 0.024(3) 0.36(1)

1.2 0.383(6) 0.208(4) 0.027(2) 0.38(1)

1.4 0.370(5) 0.202(4) 0.030(2) 0.40(1)

Table 2: Operator coe⌅cients derived from MSTW PDF analysis [15] at di⇥erent values of µ.

Table 2 lists coe⌅cient values for renormalization scales µ = 1GeV, µ = 1.2GeV and µ =
1.4GeV determined from the parameterization and analysis of [15].

6.2 Cross section

The low-velocity, spin-independent, cross section for WIMP scattering on a nucleus of mass
number A and charge Z may be written

⌃A,Z =
m2

r

⇧
|ZMp + (A� Z)Mn|2 ⇤

m2
rA

2

⇧
|Mp|2 , (32)

whereMp andMn are the matrix elements for scattering on a proton or neutron respectively8,
and mr = MmN/(M +mN ) denotes the reduced mass of the dark-matter nucleus system. As
described in Section 6.1, Mn ⇤ Mp up to corrections from numerically small CKM factors
and isospin violation in nucleon matrix elements. In the M ⌅ mN limit, the cross section
scales as A4. At finite velocity, a nuclear form factor modifies this behavior [29].

As a numerical benchmark, let us compute the cross section for low-momentum scattering
on a nucleon for a heavy real scalar in the isospin representation J = 1. Figure 3 displays
the result, as a function of the unknown Higgs boson mass. Using Table 1, we consider
separately the “traditional” inputs ��N and �0, as well as recent lattice determinations of
�lat

�N and �lat
s . For each case, separate bands represent the uncertainty due to neglected

perturbative QCD corrections, and due to the hadronic inputs. We estimate the impact of
higher order perturbative QCD corrections by varying matching scales m2

W/2 ⇥ µ2
t ⇥ 2m2

t ,
m2

b/2 ⇥ µ2
b ⇥ 2m2

b , m2
c/2 ⇥ µ2

c ⇥ 2m2
c , 1.0GeV ⇥ µ0 ⇥ 1.4GeV, adding the errors in

quadrature.
The renormalization group running and heavy quark matching for spin-2 operators are

evaluated at LO.9 For spin-0 operators, we find a large residual uncertainty at LO from
µ0, µc and µb scale variation. The RG running from µc to µ0 from (24) is thus evaluated
with NNNLO corrections, including contributions to ⇥/g through O(�4

s) and ⇤m through
O(�4

s). Accordingly, the spin-0 gluonic matrix element from (27) is also evaluated at NNNLO,
including contributions to ⇥/g through O(�4

s) and ⇤m through O(�3
s). The residual µ0 scale

8Explicitly, MN = m�3
W ⌥N |

�⇤
q=u,d,s

⌅
c(0)1q O

(0)
1q + c(2)1q vµv⇥O

(2)µ⇥
1q

⇧
+ c(0)2 O(0)

2 + c(2)2 vµv⇥O
(2)µ⇥
2

⇥
|N� .

9Up to power corrections and subleading O(�s) corrections, our evaluation is equivalent to an evaluation
in either the nf = 4 or nf = 5 flavors theories, taking the c- and b-quark momentum fractions of the proton
as input. We have verified that these results, with the matrix elements taken from [15], are within our error
budget.
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Approximate isospin symmetry:

[MSTW 0901.0002]
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f (2)
u,n = f (2)

d,p , f (2)
d,n = f (2)

u,p , f (2)
s,n = f (2)

s,p . (31)

7The latter quantity arises from a naive averaging of �s = 31 ± 15MeV [21] and �s = 59 ± 10MeV [25].
See also [26, 27, 28].
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mh ?

Cross section is completely 
determined, given standard 
model inputs 

µ(GeV) f (2)
u,p(µ) f (2)

d,p (µ) f (2)
s,p (µ) f (2)

G,p(µ)

1.0 0.404(6) 0.217(4) 0.024(3) 0.36(1)

1.2 0.383(6) 0.208(4) 0.027(2) 0.38(1)

1.4 0.370(5) 0.202(4) 0.030(2) 0.40(1)

Table 2: Operator coe⌅cients derived from MSTW PDF analysis [15] at di⇥erent values of µ.

Table 2 lists coe⌅cient values for renormalization scales µ = 1GeV, µ = 1.2GeV and µ =
1.4GeV determined from the parameterization and analysis of [15].

6.2 Cross section

The low-velocity, spin-independent, cross section for WIMP scattering on a nucleus of mass
number A and charge Z may be written

⌃A,Z =
m2

r

⇧
|ZMp + (A� Z)Mn|2 ⇤

m2
rA

2

⇧
|Mp|2 , (32)

whereMp andMn are the matrix elements for scattering on a proton or neutron respectively8,
and mr = MmN/(M +mN ) denotes the reduced mass of the dark-matter nucleus system. As
described in Section 6.1, Mn ⇤ Mp up to corrections from numerically small CKM factors
and isospin violation in nucleon matrix elements. In the M ⌅ mN limit, the cross section
scales as A4. At finite velocity, a nuclear form factor modifies this behavior [29].

As a numerical benchmark, let us compute the cross section for low-momentum scattering
on a nucleon for a heavy real scalar in the isospin representation J = 1. Figure 3 displays
the result, as a function of the unknown Higgs boson mass. Using Table 1, we consider
separately the “traditional” inputs ��N and �0, as well as recent lattice determinations of
�lat

�N and �lat
s . For each case, separate bands represent the uncertainty due to neglected

perturbative QCD corrections, and due to the hadronic inputs. We estimate the impact of
higher order perturbative QCD corrections by varying matching scales m2

W/2 ⇥ µ2
t ⇥ 2m2

t ,
m2

b/2 ⇥ µ2
b ⇥ 2m2

b , m2
c/2 ⇥ µ2

c ⇥ 2m2
c , 1.0GeV ⇥ µ0 ⇥ 1.4GeV, adding the errors in

quadrature.
The renormalization group running and heavy quark matching for spin-2 operators are

evaluated at LO.9 For spin-0 operators, we find a large residual uncertainty at LO from
µ0, µc and µb scale variation. The RG running from µc to µ0 from (24) is thus evaluated
with NNNLO corrections, including contributions to ⇥/g through O(�4

s) and ⇤m through
O(�4

s). Accordingly, the spin-0 gluonic matrix element from (27) is also evaluated at NNNLO,
including contributions to ⇥/g through O(�4

s) and ⇤m through O(�3
s). The residual µ0 scale

8Explicitly, MN = m�3
W ⌥N |

�⇤
q=u,d,s

⌅
c(0)1q O

(0)
1q + c(2)1q vµv⇥O

(2)µ⇥
1q

⇧
+ c(0)2 O(0)

2 + c(2)2 vµv⇥O
(2)µ⇥
2

⇥
|N� .

9Up to power corrections and subleading O(�s) corrections, our evaluation is equivalent to an evaluation
in either the nf = 4 or nf = 5 flavors theories, taking the c- and b-quark momentum fractions of the proton
as input. We have verified that these results, with the matrix elements taken from [15], are within our error
budget.
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Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1⇤ uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1⇤ uncertainty from hadronic inputs.

variation is insignificant compared to other uncertainties. We perform the RG running and
heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order �s(mc)�2

QCD/m
2
c ; typical numerical prefactors appearing in the coe⇧cients of

the corresponding power-suppressed operators [18] suggest that these e⇤ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

⇤p(mh = 120GeV) = 0.7±0.1+0.9
�0.3�10�47cm2 , ⇤p(mh = 140GeV) = 2.4±0.2+1.5

�0.6�10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⇥lat
s and ⇥lat

�N from Table 1, and the
second error represents the e⇤ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⇥s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e⇤ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e⇤ective la-
grangian (4) through 1/M3, we demonstrated matching conditions for subleading operators in

12

sample lattice inputs 

baryon spectroscopy inputs

Dark band: perturbative uncertainty
Light band: hadronic input uncertainty

Numerical benchmark: low velocity, spin 
independent cross section on nucleon
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Strange quark scalar matrix element dependence
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Figure 4: Breakdown of contributions to the matrix element Mp using the representative
values mh = 120GeV and ⇥lat

�N = 47(9)MeV. The labels u(S), d(S), s(S) and g(S) refer to spin-
S up, down, strange and gluon operator contributions, respectively. The thickness represents
the 1⇤ uncertainty from perturbative QCD. The left-hand vertical band corresponds to the
lattice value ⇥lat

s = 50(8)MeV and the right-hand vertical band corresponds to the range
⇥s = 366(142)MeV deduced from ⇥�N and ⇥0 in Table 1.

a simple model. Using the e⇤ective theory, we demonstrated universality of the mass splitting
induced by electroweak symmetry breaking, and of the cross section for scattering on nuclear
matter. Subleading terms in the 1/M expansion can be studied systematically using (4).

Our focus has been on the case of an isotriplet real scalar [1]. For this case, relic abun-
dance estimates [8] indicate that M � fewTeV in order to not overclose the universe. This
mass range, combined with the universal cross section, provides a target for future search
experiments.

We have presented a complete matching at first nonvanishing order in �s, and at leading
order in small ratios mW/M , mb/mW and �QCD/mc. We performed renormalization group
improvement to sum leading logarithms to all orders. The residual dependence on the high
matching scale µt ⇥ mt ⇥ mW represents uncertainty due to uncalculated higher-order per-
turbative corrections. Assuming the hadronic input ⇥lat

s from Table 1, this scale variation is
the largest remaining uncertainty on the cross section; its reduction would require higher loop
order calculations.

Our high-scale matching results for quark operators (21) and spin-zero gluon operators
agree with mW/M ⇤ 0 results presented by Hisano et al. [30], under the identification
µt = µb = µc, i.e., a one-step matching onto the nf = 3 theory.10 This approach neglects
large logarithms appearing in coe⇧cient functions. The e⇤ective theory analysis provides a

10To make the comparison to the scattering amplitude for a heavy Majorana fermion with � = �c, we use
� =

⇧
2e�imv·x(hv+Hv) =

⇧
2eimv·x(hc

v+Hc
v), where hv and Hv are spinor fields with (1�v/ )hv = (1+v/ )Hv =

0.

13

sample lattice inputs baryon spectroscopy inputs
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strange matrix element 
(and correlated gluon 
matrix element) a 
prominent uncertainty
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• universal cross section: (small) target for future 
experiments

• heavy particle formalism applies to DM candidates 
heavy compared to mW (recall mh/mt << 1 often 
useful) 

• RG analysis universal to DM computations (not 
just M>>mW): error analysis! 

• Simplified computations, e.g. 2-loop matching for 
gluon operators
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Recall in QCD: 

Neutral pion is not stable 

These decay modes would be absent if:

  - no coupling to U(1)Y

   - both L and R are 2 of SU(2)
�0 �+

W� e�

�

W+

e+

�̄

�0

�

�

Similarly, for SU(3) multiplet of QCD, 
consider (u,d,s) to transform as spin-1 of SU(2)

2 flavors:  π+ π- π0 odd under G parity

3 flavors

π+ - π- ,  K+ - K- ,   K0 - K0  odd under “G”, remaining π, K, η even

In contrast to “NGB parity” (all pions odd), this parity not broken by 
“anomalous” five-pion Wess Zumino Witten interactions

-
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Universal mass splitting induced by EWSB
3.1 Mass correction from electroweak symmetry breaking

We may evaluate the heavy scalar self energy to obtain mass corrections,

�i�(p) =
W

p
+

Z
+

⇥

+ . . . . (14)

The shift in mass due to electroweak symmetry breaking appears as a nonvanishing value of
�(p) at v ·p = 0. We find at leading order in the 1/M expansion, and first order in perturbation
theory,

⇤M = �2mW

�
�1

2
J2 + sin2 ⌅W

2
J2
3

⇥
. (15)

In particular, with Q = J3 + Y = J3 for Y = 0, the mass of each charged state is lifted
proportional to its squared charge relative to the neutral component,

M(Q) �M(Q=0) = �2Q
2mW sin2 ⌅W

2
+O(1/M) ⇤ (170MeV)Q2 . (16)

Subleading corrections can be similarly evaluated in the e⇥ective theory. Since no additional
operators appear at O(1/M0), the result (16) is model independent.4

3.2 Operator basis

The e⇥ective theory after electroweak symmetry breaking will include: the heavy scalar QED
theory for each of the electric charge eigenstates, with mass determined as in (15);5 the
Standard Model lagrangian with W,Z, h, t integrated out; and interactions,

L = L�0 + LSM + L�0,SM + . . . , (17)

where the ellipsis denotes terms containing electrically charged heavy scalars. For the electri-
cally neutral scalar,

L�0 = ⇧�
v,Q=0

⇤
iv ·  �  2

⇥
2M(Q=0)

+O(1/m3
W )

⌅
⇧v,Q=0 . (18)

Note that enforcing the reality condition (7) implies the vanishing of cD (= cM).
Interactions with Standard Model fields begin at order 1/m3

W . We restrict attention to
quark and gluon operators (neglecting lepton and photon operators) and again focus on the
neutral ⇧v,Q=0 component, dropping the Q = 0 subscript in the following. Mixing with charged
scalars will become relevant at order 1/m4

W in nuclear scattering computations; similarly, we
restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators

4The mass splitting (16) appears in limits of particular models, e.g. [1, 7, 8].
5We define the pole mass to include the contributions induced by electroweak symmetry breaking, as

opposed to introducing residual mass terms for di�erent charge eigenstates [9].
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5

⇥M = �(v · p = 0) = �2mW

�
�1

2
J2 + sin2

⇤W
2

J2
3

⇥
heavy particle Feynman rules

�i�2(v · p) = �g22

⇧
ddL

(2�)L
1

v · (L+ p)

⇤
J2 1

L2 �m2
W

+ J2
3

�
c2W

L2 �m2
Z

� 1

L2 �m2
W

+
s2W
L2

⇥⌅
+O(1/M)
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Here LSM is the usual Standard Model lagrangian, and by convention we have included interac-
tions withWµ in L⌥. So far our discussion applies to a general irreducible SU(2) representation
for the heavy scalar field ⇧v. Specializing to the case of a real scalar field, necessarily with
integer isospin, the e�ective theory is invariant under2

vµ ⌅ �vµ , ⇧v ⌅ ⇧�
v . (7)

It is straightforward to verify that all interactions in L⌥ are invariant under this transformation.
In the one-heavy-particle sector, the remaining terms involving the Higgs field H, gauge

fields, and fermions are (H̃ ⇤ i⌅2H�)

L⌥,SM = ⇧�
v

�
cH

H†H

M
+ · · ·+ cQ

taJQ̄L⌅av/QL

M2
+ cX

iQ̄L⌅a�µQL{taJ , Dµ}
2M3

+ cDQ
Q̄Lv/ iv ·DQL

M3

+ cDu
ūRv/ iv ·DuR

M3
+ cDd

d̄Rv/ iv ·DdR
M3

+ cHd
Q̄LHdR + h.c.

M3
+ cHu

Q̄LH̃uR + h.c.

M3

+ g23c
(G)
A1

GA�⇥GA
�⇥

16M3
+ g23c

(G)
A2

v�v⇥GAµ�GA
µ⇥

16M3
+ g23c

(G) ⇥
A1

⇥µ⌅⇧⌃GA
µ⌅G

A
⇧⌃

16M3
+ g23c

(G) ⇥
A2

⇥µ⌅⇧⌃v�vµGA
⌅�G

A
⇧⌃

16M3

+ . . .

⇥
⇧v . (8)

Terms odd under (7) have been omitted. Subleading terms containing only H, ⇧v and their
covariant derivatives are represented by the first ellipsis in (8). Terms bilinear in lepton fields,
and terms bilinear in the hypercharge gauge field are also present in L⌥,SM but have not been
written explicitly. Repeated indices a = 1..3 and A = 1..8 imply a sum over gauge generators.
Reparameterization invariance implies

cQ = cX . (9)

2.2 Sample matching calculation

As an illustration of the construction and matching conditions for the heavy particle lagrangian
L⌥, consider the case of a fundamental scalar, ignoring scalar self interactions (i.e., ⇧4 terms).
For the matching of the terms containing a single gauge field, we consider the full theory result
for the W⇧⇧ amputated three point function,

q

p, i p⇥, j

µ, a

= ig2(p+ p⇥)µF (q2)(taJ)ji , (10)

where q = p⇥ � p, and F (q2) is a model-dependent form factor. Setting p2 = p⇥2 = M2,
vµ = (1, 0, 0, 0), the matching conditions for scalar scattering from a µ = 0 or µ = i gauge

2For a real scalar field, the e�ective theory is obtained by introducing vµ in the field redefinition �(x) =
e�imv·x�v(x)/

�
M = eimv·x�⇤

v(x)/
�
M = �⇤(x).

3

field read

F (0)� F �(0)q2 + · · · = 1� cD
q2

8M2
+ . . . ,

(p+ p�)i
⇤
�F (0)

�
1� p2 + p�2

4M2

⇥
+ F �(0)q2 + . . .

⌅

= (p+ p�)i
⇤
�1 +

p2 + p�2

4M2
+ cM

q2

8M2

⌅
+ qi

p�2 � p2

8M2
(cD � cM) + . . . . (11)

An explicit computation of one-loop gauge boson corrections, employing dimensional regular-
ization in d = 4� 2⇥ dimensions, yields

F (q2) = 1+
g22

(4⌅)2
q2

M2

⇧
C2(r)

⇤
� 2

3⇥IR
�1+

4

3
log

M

µ

⌅
+C2(G)

⇤
� 1

24⇥IR
+
3

4
+

1

12
log

M

µ

⌅⌃
+. . . .

(12)
The quadratic Casimir coe⌅cients for the isospin-J and adjoint representations of SU(2) are
C2(J) = J(J + 1) and C2(G) = 2. From (11) and (12), after e�ective theory subtractions the
renormalized coe⌅cients cD(µ), cM(µ) in the MS renormalization scheme are found to be

cD(µ) = cM(µ) =
�2(µ)

(4⌅)

⇤
�8J(J + 1) + 12 +

�
32J(J + 1)

3
+

4

3

⇥
log

M

µ

⌅
. (13)

Matching for a general ultraviolet completion model, and for other e�ective theory coe⌅cients
proceeds similarly.

Our focus will be on the limit M ⇧ mW , where all nontrivial matching conditions at the
scale µ ⇤ M become irrelevant.3 We leave a detailed investigation of the model-dependent
form factor and subleading 1/M corrections to future investigation. Presently we proceed to
investigate the leading order predictions of the e�ective theory at scales µ ⌅ M .

3 Integrating out the weak scale

For scattering phenomena at ⇤keV energy scales of interest to dark matter-nucleus scattering
search experiments, we should examine the appropriate e�ective theory far below the elec-
troweak scale. Let us begin by integrating out the degrees of freedom at the scale mW . For
definiteness we treat the top quark mass mt and the Higgs boson mass mh as parametrically
of the same order as mW . In following sections, we will renormalize to lower energy scales,
integrating out the remaining heavy quark degrees of freedom as we pass the bottom and
charm quark thresholds. The remaining hadronic matrix elements may then be evaluated in
nf = 3 flavor QCD to obtain cross section predictions.

3In particular models with multiple mass scales, 1/M prefactors can be replaced by inverse powers of
a smaller excitation energy. It is also of interest to investigate whether large anomalous dimensions could
enhance the coe�cients of particular subleading operators.
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3 Integrating out the weak scale
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Sample matching calculation

full theory:

full theory = effective theory: 

⇒
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