Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets

RICHARD HILL

ICHEP 7 July 2012

Based on work w/ Mikhail Solon, Phys.Lett. B707 (2012) 539-545

Outline

- simple model of SU(2) charged DM
- heavy particle effective theory
 - electroweak symmetric theory
 - low energy theory
 - matching
 - running
 - hadronic inputs
 - universal cross section for SU(2) charged WIMP

summary and outlook

Multiple astrophysical indications of cold dark matter

modification of galactic rotation curves

imprints on microwave background

apparent extra collisionless matter from lensing measurements

3

Multiple astrophysical indications of cold dark matter

WIMPs Indication of thermal relic, weakly interacting, particles beyond the standard model ?

imprints on microwave background

apparent extra collisionless matter from lensing measurements

on-ramps to the talk

- a motivation for electroweak-SU(2) charged dark matter
- QCD anatomy of dark matter direct detection
- (formalism in heavy particle effective theories)

Will find a general mechanism that can lead to stable particles,

• M ~ TeV for particle to be significant component of thermal relic dark matter

• predictive scattering cross section on nucleon in limit $M >> m_W$

technical part of talk: compute this universal cross section in terms of Standard Model parameters

A nontrivial problem involving multiple scales

Parameter	Value
$ V_{td} $	~ 0
$ V_{ts} $	~ 0
$ V_{tb} $	~ 1
m_u/m_d	0.49(13)
m_s/m_d	19.5(2.5)
$\Sigma_{\pi N}^{\text{lat}}$	$0.047(9)\mathrm{GeV}$
Σ_s^{lat}	$0.050(8){ m GeV}$
$\Sigma_{\pi N}$	$0.064(7){ m GeV}$
Σ_0	$0.036(7){ m GeV}$
m_W	$80.4{ m GeV}$
m_t	$172 { m ~GeV}$
m_b	$4.75~{\rm GeV}$
m_c	$1.4 \mathrm{GeV}$
m_N	$0.94~{\rm GeV}$
$\alpha_s(m_Z)$	0.118
$\alpha_2(m_Z)$	0.0338
m_1	2
iiun,	(

A prototype for systematic computation of QCD effects in DM - nucleus scattering

Recall axion: UV completions realizing Peccei Quinn mechanism generically involve fermions coupled to color SU(3)

$$\mathcal{L} = |\partial_{\mu}\sigma|^{2} + \bar{q}(i\partial + g\mathcal{A})q - V(\sigma) - \lambda\sigma\bar{q}_{L}q_{R} + h.c.$$
new scalar
new quark
Low energy:
$$a(x) \rightarrow a(x) + c$$

$$\mathcal{L} = \frac{1}{2}(\partial_{\mu}a)^{2} + \frac{a(x)}{f}\epsilon^{\mu\nu\rho\sigma}F^{a}_{\mu\nu}F^{a}_{\rho\sigma} + \dots$$

Are there (beyond SM) Dirac fermions coupled to SM gauge fields (e.g. axion models: SU(3)) ?

Weakly interacting stable pions

Consider confined Dirac fermions, coupled to weak SU(2)

$$\Delta \mathcal{L} = \bar{\psi}(i\partial \!\!\!/ + g_2 W^a t^a + \hat{g} \hat{A})\psi$$

new "quarks" and
"gluons"

SU(2) is a special group: all representations are self-conjugate:

$$\begin{split} -t^{a*} &= S^{\dagger}t^{a}S \qquad \text{e.g.} \quad -\frac{\sigma^{a*}}{2} = (i\sigma^{2})^{\dagger}\frac{\sigma^{a}}{2}(i\sigma^{2}), \quad a = 1, 2, 3 \\ \end{split}$$

$$\begin{split} \text{Implies an invariance of the action:} &\implies \qquad \mathcal{L} \to \mathcal{L} \\ \psi \to S\psi^{\mathcal{C}} = Si\gamma^{2}\psi^{*} \\ W^{a} \to W^{a} \end{split}$$

Call this discrete symmetry "G parity" after (ungauged) QCD operation. Consider lightest G-odd particle: Lorentz scalar, weak SU(2) triplet

Richard Hill

7

Enter heavy particle effective theory

Found a mechanism that generates an isotriplet of real scalars

If the neutral component is a significant component of thermal relic dark matter, can estimate it's mass in the ~TeV range

Consider any such SU(2) electroweak multiplet

Universal properties emerge in the limit $M >> m_W$, described by the relevant heavy particle effective theory

$$\mathcal{L} = c_1 + c_2$$

Scattering on nucleon is completely determined, up to controlled corrections

 m_W/M , $\Lambda^2_{\rm QCD}/m_c^2$, m_b/m_W ...

 $+ \frac{3}{1} = c_1 + \dots$

Multiple scales:

Renormalization analysis required to sum large logarithms

$$\alpha_s(\mu) \log \frac{m_t}{\mu} \sim \alpha_s(1 \,\text{GeV}) \log \frac{170 \,\text{GeV}}{1 \,\text{GeV}}$$

Consider effective theory at each scale:

Electroweak symmetric theory

Operator basis

Building blocks:

$$\phi_v(x), \quad v^{\mu}, \quad D_{\perp\mu} = D_{\mu} - v^{\mu}v \cdot D$$

Everything not forbidden is allowed:

$$\begin{split} \mathcal{L}_{\phi} &= \phi_{v}^{*} \bigg\{ iv \cdot D - c_{1} \frac{D_{\perp}^{2}}{2M} + c_{2} \frac{D_{\perp}^{4}}{8M^{3}} + g_{2}c_{D} \frac{v^{\alpha}[D_{\perp}^{\beta}, W_{\alpha\beta}]}{8M^{2}} + ig_{2}c_{M} \frac{\{D_{\perp}^{\alpha}, [D_{\perp}^{\beta}, W_{\alpha\beta}]\}}{16M^{3}} \\ &+ g_{2}^{2}c_{A1} \frac{W^{\alpha\beta}W_{\alpha\beta}}{16M^{3}} + g_{2}^{2}c_{A2} \frac{v_{\alpha}v^{\beta}W^{\mu\alpha}W_{\mu\beta}}{16M^{3}} + g_{2}^{2}c_{A3} \frac{\mathrm{Tr}(W^{\alpha\beta}W_{\alpha\beta})}{16M^{3}} + g_{2}^{2}c_{A4} \frac{\mathrm{Tr}(v_{\alpha}v^{\beta}W^{\mu\alpha}W_{\mu\beta})}{16M^{3}} \\ &+ g_{2}^{2}c_{A1}' \frac{\epsilon^{\mu\nu\rho\sigma}W_{\mu\nu}W_{\rho\sigma}}{16M^{3}} + g_{2}^{2}c_{A2}' \frac{\epsilon^{\mu\nu\rho\sigma}v^{\alpha}v_{\mu}W_{\nu\alpha}W_{\rho\sigma}}{16M^{3}} + g_{2}^{2}c_{A3}' \frac{\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}(W_{\mu\nu}W_{\rho\sigma})}{16M^{3}} \\ &+ g_{2}^{2}c_{A4}' \frac{\epsilon^{\mu\nu\rho\sigma}v^{\alpha}v_{\mu}\mathrm{Tr}(W_{\nu\alpha}W_{\rho\sigma})}{16M^{3}} + \dots \bigg\} \phi_{v} \,, \end{split}$$

Electroweak symmetric theory

Operator basis

Building blocks:

$$\phi_v(x), \quad v^{\mu}, \quad D_{\perp\mu} = D_{\mu} - v^{\mu}v \cdot D$$

Everything not forbidden is allowed:

$$\begin{split} \mathcal{L}_{\phi} &= \phi_{v}^{*} \bigg\{ iv \cdot D - c_{1} \frac{D_{\perp}^{2}}{2M} + c_{2} \frac{D_{\perp}^{4}}{8M^{3}} + g_{2}c_{D} \frac{v^{\alpha}[D_{\perp}^{\beta}, W_{\alpha\beta}]}{8M^{2}} + ig_{2}c_{M} \frac{\{D_{\perp}^{\alpha}, [D_{\perp}^{\beta}, W_{\alpha\beta}]\}}{16M^{3}} \\ &+ g_{2}^{2}c_{A1} \frac{W^{\alpha\beta}W_{\alpha\beta}}{16M^{3}} + g_{2}^{2}c_{A2} \frac{v_{\alpha}v^{\beta}W^{\mu\alpha}W_{\mu\beta}}{16M^{3}} + g_{2}^{2}c_{A3} \frac{\mathrm{Tr}(W^{\alpha\beta}W_{\alpha\beta})}{16M^{3}} + g_{2}^{2}c_{A4} \frac{\mathrm{Tr}(v_{\alpha}v^{\beta}W^{\mu\alpha}W_{\mu\beta})}{16M^{3}} \\ &+ g_{2}^{2}c_{A1}' \frac{\epsilon^{\mu\nu\rho\sigma}W_{\mu\nu}W_{\rho\sigma}}{16M^{3}} + g_{2}^{2}c_{A2}' \frac{\epsilon^{\mu\nu\rho\sigma}v^{\alpha}v_{\mu}W_{\nu\alpha}W_{\rho\sigma}}{16M^{3}} + g_{2}^{2}c_{A3}' \frac{\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}(W_{\mu\nu}W_{\rho\sigma})}{16M^{3}} \\ &+ g_{2}^{2}c_{A4}' \frac{\epsilon^{\mu\nu\rho\sigma}v^{\alpha}v_{\mu}\mathrm{Tr}(W_{\nu\alpha}W_{\rho\sigma})}{16M^{3}} + \dots \bigg\} \phi_{v} \,, \end{split}$$

Generalized polarizability operators

Standard model interactions

$$\begin{aligned} \mathcal{L}_{\phi,\mathrm{SM}} &= \phi_v^* \bigg\{ c_H \frac{H^{\dagger} H}{M} + \dots + c_Q \frac{t_J^a \bar{Q}_L \tau^a \psi Q_L}{M^2} + c_X \frac{i \bar{Q}_L \tau^a \gamma^\mu Q_L \{ t_J^a, D_\mu \}}{2M^3} + c_{DQ} \frac{\bar{Q}_L \psi i v \cdot DQ_L}{M^3} \\ &+ c_{Du} \frac{\bar{u}_R \psi i v \cdot Du_R}{M^3} + c_{Dd} \frac{\bar{d}_R \psi i v \cdot Dd_R}{M^3} + c_{Hd} \frac{\bar{Q}_L H d_R + h.c.}{M^3} + c_{Hu} \frac{\bar{Q}_L \tilde{H} u_R + h.c.}{M^3} \\ &+ g_3^2 c_{A1}^{(G)} \frac{G^{A\,\alpha\beta} G_{\alpha\beta}^A}{16M^3} + g_3^2 c_{A2}^{(G)} \frac{v_\alpha v^\beta G^{A\,\mu\alpha} G_{\mu\beta}^A}{16M^3} + g_3^2 c_{A1}^{(G)} \frac{\epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^A G_{\rho\sigma}^A}{16M^3} + g_3^2 c_{A2}^{(G)} \frac{\epsilon^{\mu\nu\rho\sigma} v^\alpha v_\mu G_{\nu\alpha}^A G_{\rho\sigma}^A}{16M^3} \\ &+ \dots \bigg\} \phi_v \,. \end{aligned}$$

Reparameterization invariance:

 $c_Q = c_X$

All of these are suppressed by I/M

(Ignore for now, but give universal subleading corrections)

Low energy theory

Operator basis

$$\mathcal{L} = \mathcal{L}_{\phi_0} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\phi_0,\mathrm{SM}} + \dots,$$

Heavy neutral scalar:

$$\mathcal{L}_{\phi_0} = \phi_{v,Q=0}^* \left\{ iv \cdot \partial - \frac{\partial_{\perp}^2}{2M_{(Q=0)}} + \mathcal{O}(1/m_W^3) \right\} \phi_{v,Q=0}$$

SM interactions:

 $\mathcal{L}_{\phi_0,\text{SM}} = \frac{1}{m_W^3} \phi_v^* \phi_v \left\{ \sum_q \left[c_{1q}^{(0)} O_{1q}^{(0)} + c_{1q}^{(2)} v_\mu v_\nu O_{1q}^{(2)\mu\nu} \right] + c_2^{(0)} O_2^{(0)} + c_2^{(2)} v_\mu v_\nu O_2^{(2)\mu\nu} \right\} + \dots$

 $\begin{aligned} & \text{Convenient to choose basis of definite spin} \\ & O_{1q}^{(0)} = m_q \bar{q} q , \\ & O_{2}^{(0)} = (G_{\mu\nu}^A)^2 , \\ & O_{1q}^{(2)\mu\nu} = \bar{q} \left(\gamma^{\{\mu} i D^{\nu\}} - \frac{1}{d} g^{\mu\nu} i D \right) q , \\ & O_{2}^{(2)\mu\nu} = -G^{A\mu\lambda} G^{A\nu}{}_{\lambda} + \frac{1}{d} g^{\mu\nu} (G^A_{\alpha\beta})^2 . \end{aligned}$

Richard Hill

 $c_D=0$ (reality constraint)

Matching (µ=M)

Heavy particle Feynman rules simplify matching calculations

quark operators

gluon operators

$$\begin{split} c_2^{(0)}(\mu_t) &= \mathcal{C}\frac{\alpha_s(\mu_t)}{4\pi} \left[\frac{1}{3x_h^2} + \frac{3+4x_t+2x_t^2}{6(1+x_t)^2} \right] \,, \\ c_2^{(2)}(\mu_t) &= \mathcal{C}\frac{\alpha_s(\mu_t)}{4\pi} \left[-\frac{32}{9} \log \frac{\mu_t}{m_W} - 4 - \frac{4(2+3x_t)}{9(1+x_t)^3} \log \frac{\mu_t}{m_W(1+x_t)} \right. \\ &- \frac{4(12x_t^5 - 36x_t^4 + 36x_t^3 - 12x_t^2 + 3x_t - 2)}{9(x_t - 1)^3} \log \frac{x_t}{1+x_t} - \frac{8x_t(-3+7x_t^2)}{9(x_t^2 - 1)^3} \log 2 \\ &- \frac{48x_t^6 + 24x_t^5 - 104x_t^4 - 35x_t^3 + 20x_t^2 + 13x_t + 18}{9(x_t^2 - 1)^2(1+x_t)} \right] . \end{split}$$

high scale matching for quark + spin-0 gluon agree with [Hisano, Ishiwata, Nagata, Takesako (2011)]

spin-2 gluon new

Full theory side:

ry side:

$$i\mathcal{M} = -g_2^2 \int (dL) \left[\frac{1}{-v \cdot L + i0} + \frac{1}{v \cdot L + i0} \right] \frac{1}{(L^2 - m_W^2 + i0)^2} v_\mu v_\nu \Pi^{\mu\nu}(L)$$
quark propagator in background gluon field

Electroweak gauge invariance is immediate:

$$v^{\mu} \left[g_{\mu\mu'} - (1 - \xi) \frac{L_{\mu} L_{\mu'}}{L^2 - \xi m_W^2} \right] = v_{\mu'} + \mathcal{O}(v \cdot L)$$

crossed and uncrossed diagrams cancel

Fock-Schwinger gauge (x.A=0) :

$$iS(p) = \frac{i}{\not p - m} + g \int (dq) \frac{i}{\not p - m} i \mathcal{A}(q) \frac{i}{\not p - \not q - m} + g^2 \int (dq_1) (dq_2) \frac{i}{\not p - m} i \mathcal{A}(q_1) \frac{i}{\not p - \not q_1 - m} i \mathcal{A}(q_2) \frac{i}{\not p - \not q_1 - \not q_2 - m} + \dots$$

Richard Hill

Universal behavior in heavy, weakly interacting DM

Effective theory side:

Ignoring quark masses, effective theory onshell loop diagrams vanish in dim.reg.

$$\int \frac{d^d L}{(2\pi)^d} f(L^2) = 0 = \frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}}$$

After equating full theory = effective theory, all remaining divergences are UV

(can also work with finite quark masses)

Solution to RG equations

$$O_{1q}^{(0)} = m_q \bar{q}q, \qquad O_2^{(0)} = (G_{\mu\nu}^A)^2,$$

$$O_{1q}^{(2)\mu\nu} = \bar{q} \left(\gamma^{\{\mu} i D^{\nu\}} - \frac{1}{d} g^{\mu\nu} i D \right) q, \qquad O_2^{(2)\mu\nu} = -G^{A\mu\lambda} G^{A\nu}{}_{\lambda} + \frac{1}{d} g^{\mu\nu} (G_{\alpha\beta}^A)^2,$$

$$\frac{d}{d\log\mu} O_i^{(S)} = -\sum_j \gamma_{ij}^{(S)} O_j \qquad \frac{d}{d\log\mu} c_i^{(S)} = \sum_j \gamma_{ji}^{(S)} c_j^{(S)}$$
Spin 0: $c_2^{(0)}(\mu) = c_2^{(0)}(\mu_t) \frac{\frac{\beta}{g} [\alpha_s(\mu)]}{\frac{\beta}{g} [\alpha_s(\mu_t)]} \qquad \hat{\gamma}^{(0)} = \begin{pmatrix} 0 & 0 \\ \ddots & \vdots \\ \frac{1}{2} & 0 & 0 \\ -2\gamma'_m \cdots -2\gamma'_m |(\beta/g)' \end{pmatrix}$

$$c_1^{(0)}(\mu) = c_1^{(0)}(\mu_t) - 2[\gamma_m(\mu) - \gamma_m(\mu_t)] \frac{c_2^{(0)}(\mu_t)}{\frac{\beta}{g} [\alpha_s(\mu_t)]}$$

Spin 2:

Diagonalize anomalous dimension matrix (familiar from PDF analysis)

As check, can evaluate spin-2 matrix elements at high scale (spin-0 and spin-2 decoupled)

Matching (µ=m_b)

Integrate out heavy quarks

$$c_{2}^{(0)}(\mu_{b}) = \tilde{c}_{2}^{(0)}(\mu_{b}) \left(1 + \frac{4\tilde{a}}{3}\log\frac{m_{b}}{\mu_{b}}\right) - \frac{\tilde{a}}{3}\tilde{c}_{1b}^{(0)}(\mu_{b}) \left[1 + \tilde{a}\left(11 + \frac{4}{3}\log\frac{m_{b}}{\mu_{b}}\right)\right] + \mathcal{O}(\tilde{a}^{3})$$
$$c_{1q}^{(0)}(\mu_{b}) = \tilde{c}_{1q}^{(0)}(\mu_{b}) + \mathcal{O}(\tilde{a}^{2}),$$

$$c_2^{(2)}(\mu_b) = \tilde{c}_2^{(2)}(\mu_b) - \frac{4\tilde{a}}{3}\log\frac{m_b}{\mu_b}\tilde{c}_{1b}^{(2)}(\mu_b) + \mathcal{O}(\tilde{a}^2)$$

 $c_{1a}^{(2)}(\mu_b) = \tilde{c}_{1a}^{(2)}(\mu_b) + \mathcal{O}(\tilde{a}),$

[Ovrut, Schnitzer, 1982] [Inami, Kubota, Okada, 1983]

Contribution to gluon operators familiar from $h \rightarrow gg$

Heavy quark mass scheme enters at higher order

Charm quark treated similarly (after running to mc)

Hadronic matrix elements: Spin - 0

$$\langle N(k)|T^{\mu\nu}|N(k)\rangle = \frac{k^{\mu}k^{\nu}}{m_N} = \frac{1}{m_N}\left(k^{\mu}k^{\nu} - \frac{1}{4}g^{\mu\nu}m_N^2\right) + m_N\frac{1}{4}g^{\mu\nu}$$

Spin-0 operators determine contributions to nucleon mass

$$m_{N} = (1 - \gamma_{m}) \sum_{q} \langle N | m_{q} \bar{q} q | N \rangle + \frac{\beta}{2g} \langle N | (G_{\mu\nu}^{a})^{2} | N \rangle$$
$$\langle N | O_{1q}^{(0)} | N \rangle \equiv m_{N} f_{q,N}^{(0)}, \qquad \frac{-9\alpha_{s}(\mu)}{8\pi} \langle N | O_{2}^{(0)}(\mu) | N \rangle \equiv m_{N} f_{G,N}^{(0)}(\mu)$$

significant uncertainty in this quantity

$$m_N(f_{u,N}^{(0)} + f_{d,N}^{(0)}) \approx \Sigma_{\pi N}, \quad m_N f_{s,N}^{(0)} = \frac{m_s}{m_u + m_d} (\Sigma_{\pi N} - \Sigma_0) = \Sigma_s$$
$$f_{G,N}^{(0)}(\mu) \approx 1 - \sum_{q=u,d,s} f_{q,N}^{(0)}$$

but NLO, NNLO corrections significant and are included

Hadronic matrix elements: Spin - 2

$$\langle N(k)|T^{\mu\nu}|N(k)\rangle = \frac{k^{\mu}k^{\nu}}{m_N} = \frac{1}{m_N}\left(k^{\mu}k^{\nu} - \frac{1}{4}g^{\mu\nu}m_N^2\right) + m_N\frac{1}{4}g^{\mu\nu}$$

Spin-2 operators determine momentum fraction carried by partons

$$\langle N|O_{1q}^{(2)\mu\nu}(\mu)|N\rangle \equiv \frac{1}{m_N} \left(k^{\mu}k^{\nu} - \frac{g^{\mu\nu}}{4}m_N^2\right) f_{q,N}^{(2)}(\mu)$$
$$\langle N|O_2^{(2)\mu\nu}(\mu)|N\rangle \equiv \frac{1}{m_N} \left(k^{\mu}k^{\nu} - \frac{g^{\mu\nu}}{4}m_N^2\right) f_{G,N}^{(2)}(\mu)$$

	$f^{(2)}_{G,p}(\mu)$	$f_{s,p}^{(2)}(\mu)$	$f_{d,p}^{(2)}(\mu)$	$f_{u,p}^{(2)}(\mu)$	$\mu({\rm GeV})$
	0.36(1)	0.024(3)	0.217(4)	0.404(6)	1.0
[MSTW 0901.0002]	0.38(1)	0.027(2)	0.208(4)	0.383(6)	1.2
	0.40(1)	0.030(2)	0.202(4)	0.370(5)	1.4

$$f_{q,p}^{(2)}(\mu) = \int_0^1 dx \, x[q(x,\mu) + \bar{q}(x,\mu)]$$

Approximate isospin symmetry:

$$f_{u,n}^{(2)} = f_{d,p}^{(2)}, \quad f_{d,n}^{(2)} = f_{u,p}^{(2)}, \quad f_{s,n}^{(2)} = f_{s,p}^{(2)}$$

Cross section

Parameter	Value
$ V_{td} $	~ 0
$ V_{ts} $	~ 0
$ V_{tb} $	~ 1
m_u/m_d	0.49(13)
m_s/m_d	19.5(2.5)
$\Sigma_{\pi N}^{ m lat}$	$0.047(9)\mathrm{GeV}$
Σ_s^{lat}	$0.050(8){ m GeV}$
$\Sigma_{\pi N}$	$0.064(7){ m GeV}$
Σ_0	$0.036(7){ m GeV}$
m_W	$80.4{ m GeV}$
m_t	$172 {\rm GeV}$
m_b	$4.75 \mathrm{GeV}$
m_c	$1.4 \mathrm{GeV}$
m_N	$0.94 { m GeV}$
$\alpha_s(m_Z)$	0.118
$\alpha_2(m_Z)$	0.0338
m_h	?

Cross section is completely determined, given standard model inputs

$$\sigma_{A,Z} = \frac{m_r^2}{\pi} \left| Z\mathcal{M}_p + (A - Z)\mathcal{M}_n \right|^2 \approx \frac{m_r^2 A^2}{\pi} |\mathcal{M}_p|^2$$

Previous estimates range over several orders of magnitude, errors not specified

> [Cirelli, Strumia (2006-2009)] [Essig (2008)] [Hisano, Ishiwata, Nagata, Takesako (2011)]

Consider result as a function of higgs boson mass

Numerical benchmark: low velocity, spin independent cross section on nucleon

Dark band: perturbative uncertainty Light band: hadronic input uncertainty

Numerical benchmark: low velocity, spin independent cross section on nucleon

Strange quark scalar matrix element dependence

strange matrix element (and correlated gluon matrix element) a prominent uncertainty

Summary and Outlook

- universal cross section: (small) target for future experiments
- heavy particle formalism applies to DM candidates heavy compared to m_W (recall $m_h/m_t << 1$ often useful)
- RG analysis universal to DM computations (not just M>>mw): error analysis!
- Simplified computations, e.g. 2-loop matching for gluon operators

Recall in QCD:

2 flavors: $\pi^+ \pi^- \pi^0$ odd under G parity

Neutral pion is not stable

These decay modes would be absent if:

- no coupling to $U(I)_Y$
- both L and R are 2 of SU(2)

3 flavors

Similarly, for SU(3) multiplet of QCD, consider (u,d,s) to transform as spin-1 of SU(2)

 π^+ - π^- , K⁺ - K⁻, K⁰ - \overline{K}^0 odd under "G", remaining π , K, η even

In contrast to "NGB parity" (all pions odd), this parity not broken by "anomalous" five-pion Wess Zumino Witten interactions

Universal mass splitting induced by EWSB

$$-i\Sigma(p) = p + \chi^{W} + \chi^{W} + \chi^{\gamma} + \dots$$

$$-i\Sigma_2(v \cdot p) = -g_2^2 \int \frac{d^d L}{(2\pi)^L} \frac{1}{v \cdot (L+p)} \left[J^2 \frac{1}{L^2 - m_W^2} + J_3^2 \left(\frac{c_W^2}{L^2 - m_Z^2} - \frac{1}{L^2 - m_W^2} + \frac{s_W^2}{L^2} \right) \right] + \mathcal{O}(1/M)$$

heavy particle Feynman rules

$$\delta M = \Sigma (v \cdot p = 0) = \alpha_2 m_W \left[-\frac{1}{2} J^2 + \sin^2 \frac{\theta_W}{2} J_3^2 \right]$$

$$M_{(Q)} - M_{(Q=0)} = \alpha_2 Q^2 m_W \sin^2 \frac{\theta_W}{2} + \mathcal{O}(1/M) \approx (170 \,\mathrm{MeV})Q^2$$

Sample matching calculation

full theory:

$$F(q^2) = 1 + \frac{g_2^2}{(4\pi)^2} \frac{q^2}{M^2} \left\{ C_2(r) \left[-\frac{2}{3\epsilon_{\rm IR}} - 1 + \frac{4}{3} \log \frac{M}{\mu} \right] + C_2(G) \left[-\frac{1}{24\epsilon_{\rm IR}} + \frac{3}{4} + \frac{1}{12} \log \frac{M}{\mu} \right] \right\} + \dots$$

full theory = effective theory:

$$F(0) - F'(0)q^{2} + \dots = 1 - c_{D}\frac{q^{2}}{8M^{2}} + \dots ,$$

$$(p + p')^{i} \left[-F(0) \left(1 - \frac{p^{2} + p'^{2}}{4M^{2}} \right) + F'(0)q^{2} + \dots \right]$$

$$= (p + p')^{i} \left[-1 + \frac{p^{2} + p'^{2}}{4M^{2}} + c_{M}\frac{q^{2}}{8M^{2}} \right] + q^{i}\frac{p'^{2} - p^{2}}{8M^{2}}(c_{D} - c_{M}) + \dots .$$

$$\Rightarrow c_D(\mu) = c_M(\mu) = \frac{\alpha_2(\mu)}{(4\pi)} \left[-8J(J+1) + 12 + \left(\frac{32J(J+1)}{3} + \frac{4}{3}\right) \log \frac{M}{\mu} \right]$$

Richard Hill

University of Chicago

29

Universal behavior in heavy, weakly interacting DM