Recent results on charmless semileptonic decays at BABAR

Florian U. Bernlochner

florian.bernlochner@cern.ch

on behalf of the BABAR collaboration

University of Victoria, British Columbia, Canada

July 5, 2012

ICHEP 2012

Melbourne Australia

Overview

- I. Why explore the Flavor sector of the Standard Model in the first place?
- II. Inclusive measurement of $B \to X_u \, \ell \, \bar{\nu}_\ell$ [arXiv:1112.0702]
- III. Exclusive measurements for $B \rightarrow h \ell \bar{\nu}_{\ell}$ with $h = \pi, \omega, \rho, \eta, \eta'$ [PRD:83032007], [arXiv:1205.6245], 2× [to be submitted]
- IV. $|V_{ub}|$ from both approaches
- V. The status of charmless semileptonic decays at BABAR

I.a Motivation

Why explore the Flavor sector of the Standard Model (SM) and measure charmless semileptonic decays?

cf. Backup A.a for a slightly longer introduction

I. Charmless semileptonic decay rate allows determination of $|V_{ub}|$

- II. $|V_{ub}|$ important input for global CKM fits.
 - a What are the contributions from the Flavor sector to CP violation in the Universe?
 - b Violation of CKM unitarity ⇔ new physics

III. Inclusive vs Exclusive measurements:

- a Fairly independent experimental and theoretical methods
- b Probe our understanding of non-perturbative and perturbative QCD

I.b Semileptonic decays

Semileptonic $b \rightarrow u$ decays are characterized by

- a $q^2 = (p_B p_X)^2 = (p_\ell + p_{\bar{\nu}})^2$
- b θ: Angular variables (helicity,...)
- c mX: Invariant hadronic mass

 ${\cal B}(B o X_u \, \ell \, ar
u_\ell) \propto |V_{ub}|^2 imes$ 'Something we can predict from Theory'

- a Challenges:
 - $\Rightarrow \mbox{Much more abundant } b \to c \ \ell \ \bar{\nu}_\ell \ \mbox{decays:} \\ \mbox{Force e.g. inclusive measurements into regions with larger theory uncertainties. Orbital or other modes poorly known.}$
 - \Rightarrow Very low signal yields
- b Experimental techniques:
 - ⇒ Neutrino reconstruction:

$$(E_{\text{miss}}, \vec{p}_{\text{miss}}) = (E_{\text{beam}}, \vec{p}_{\text{beam}}) - \sum_{i} (E_{i}, \vec{p}_{i})$$

Missing mass squared: $MM^{2} = E_{\text{miss}}^{2} - |\vec{p}_{\text{miss}}|^{2}$

 \Rightarrow Beam constraints: ΔE and m_{ES}

 $(E_B^*, \vec{p}_B^{*2}) = p_X + p_\ell + p_{\text{miss}}$ or inferred from the tag side if present; * = in $\Upsilon(4S)$ rest frame; E_{beam}^* beam energy

BABAR charmless overview:

II. New inclusive measurement

At a glance:

- Full BABAR dataset of $467.8 imes 10^6$ $Bar{B}$
- Inclusive $B \to X_u \,\ell \,\bar{\nu}_\ell$ using hadronic tags to reconstruct p_B , require lepton
- $p_X = \sum_i p_i^{\text{tracks}} + \sum_j p_j^{\text{calo}}$

The sum excludes the lepton and all tracks and calo. clusters associated with the tagged B

 Cut based Bkg suppression, e.g. MM², total charge, D* veto based on partial reco.

-
$$q^2 = (p_B - p_X)^2; m_X^2 = p_X^2; p_\ell:$$

 $P_+ = E_X - |\vec{p}_X|$

- tag Unbinned LH Fit in m_{ES} for comb. & continuum Bkg (\rightarrow top plot)
- $\begin{array}{ll} \mbox{recoil} & \chi^2 \mbox{ Fit } (\rightarrow \mbox{List}) \mbox{ for signal and } B\bar{B} \mbox{ Bkg} \\ & \mbox{Step 1} & \mbox{Fit } \# \mbox{ of } B \rightarrow X_u \mbox{ℓ $\bar{\nu}_\ell$ evts. in given bins} \\ & \mbox{Step 2} & \mbox{Determine } \# \mbox{ of } B \rightarrow X \mbox{ℓ $\bar{\nu}_\ell$ evts. in reco sample} \end{array}$

Signal regions of phase-space:

- 1) $m_{\chi} < 1.55 \text{ GeV}$ 2) $m_{\chi} < 1.70 \text{ GeV}$ 3) $P_{+} < 0.66 \text{ GeV}$ 4) $m_{\chi} < 1.70 \text{ GeV} \& q^{2} > 8 \text{ GeV}^{2}$ 5) $m_{\chi} - q^{2}, p_{\ell}^{*} > 1.0 \text{ GeV}$ 6) $p_{\ell}^{*} > 1.0 \text{ GeV}$ 7) $p_{\ell}^{*} > 1.3 \text{ GeV}$ * = B rest frame
- $\Rightarrow \text{ Measure ratio } \Delta \mathcal{B}(B \rightarrow X_u \, \ell \, \bar{\nu}_\ell) / \mathcal{B}(B \rightarrow X \, \ell \, \bar{\nu}_\ell) \ (\rightarrow \text{ many systematics cancel})$

[arXiv:1112.0702]

II. New inclusive measurement

arXiv:1112.0702

II. New inclusive measurement

[arXiv:1112.0702]

The apex of the UT from the Moriond 2012 CKMFitter result is compared to the constraints from the new BABAR inclusive measurement as determined by the QCD calculation from [JHEP:0710:058], $A = 0.812 \pm 0.022$, and $\lambda = 0.22543 \pm 0.00095$. \rightarrow other calculations in Backup

- $|V_{ub}| = \sqrt{\frac{\Delta B}{\tau_B \,\Delta \Gamma_{theory}}}$ with $\Delta \Gamma_{theory}$ from ADFR [EPJC:59;831], BLNP [NPB:699;335], DGE [JHEP:0601097], GGOU[JHEP:0710:058]
- $m_X q^2$, $p_\ell^* > 1.0 \text{ GeV}$ vs $p_\ell^* > 1.0 \text{ GeV}$

Events overlap completely; Very nice agreement between theory predictions and signal regions \rightarrow large region of phase space, very reduced sensitivity to non-pert. corrections (\cong shape function)

-
$$m_X - q^2$$
, $p_\ell^* > 1.0~{
m GeV}$ vs $m_X < 1.7~{
m GeV}$

Large overlap, cut on m_X increases sensitivity to non-pert. corrections (\cong shape function)

$ V_{ub} imes 10^3$	$p_l^* > 1.0~{ m GeV}$	$m_X - q^2$	$m_X < 1.7$ GeV ^{is}
ADFR	$4.3 \pm 0.3 ^{+ 0.2}_{- 0.2}$	$4.3 \pm 0.2 \substack{+ \ 0.2 \\ - \ 0.2}$	$3.7 \pm 0.2^{+0.2}_{-0.2}$
BLNP	$4.3 \pm 0.3 ^{+ 0.2}_{-0.2}$	$4.3 \pm 0.2^{+0.2}_{-0.2}$	$4.0 \pm 0.2 ^{+ 0.2}_{-0.2}$
DGE	$4.4 \pm 0.3^{+0.1}_{-0.1}$	$4.4 \pm 0.2^{+0.1}_{-0.1}$	$4.2 \pm 0.2 ^{+ 0.3}_{-0.2}$
GGOU	$4.4 \pm 0.3 ^{+ ar{0}. ar{1}}_{- 0.1}$	$4.4 \pm 0.2 ^{+ 0.1}_{- 0.1}$	$3.9 \pm 0.2 ^{+ ar{0}. ar{2}}_{- 0.2}$

BABAR charmless overview:

III.a New $B ightarrow h \, \ell \, ar{ u}_\ell$ measurement

to be submitted

At a glance:

- Full BABAR dataset of $467.8 imes 10^6$ $Bar{B}$
- $B
 ightarrow h \, \ell \, ar{
 u}_\ell$ with $h=\pi,\eta,\eta',\omega$
- Untagged; loose neutrino reconstruction
- $q^2 = (p_B p_h)^2$, p_B from average over directions; resolution unfolded
- q^2 dependent selection ightarrow Figure
- Binned LH Fit in $\Delta E m_{ES} q^2$: $h = \pi$: Signal in 12 bins of q^2 ; Bkg in two bins of q^2 $h = \omega$: Signal in 5 bins of q^2 ; Bkg in one q^2 bin $h = \eta$: Signal in 5 bins of q^2 ; fixed or in one q^2 bin $h = \eta'$: Signal in 1 bins of q^2 ; Bkg fixed

cuts(q²) for $MM^2/(2E_{\rm miss})$ and the cosine of the lepton helicity angle $\cos \theta_I$. The shaded region is excluded.

L

	$q^2/{ m GeV}^2$	$ V_{ub} \times 10^3$
[PRD:73074502]	> 16	$3.47 \pm 0.13 ^{+ 0.60}_{-0.39}$
[PRD:830904021]	< 12	$3.46 \pm 0.10 ^{+ 0.37}_{-0.32}$
[arXiv:1203.1359]	0	$3.34 \pm 0.11 ^{+ 0.29}_{-0.26}$

b Combined lattice and data fit of whole q^2 range with model independent form factor parametrization:

$$|V_{ub}| = 3.25 \pm 0.31 \times 10^{-3}$$

[PRD:56303], [PRD:80034026], [PRD:79054507]

BABAR charmless overview:

III.c New $B \rightarrow \omega \, \ell \, \bar{\nu}_{\ell}$ measurement

At a glance:

[arXiv:1205.6245]

- Full BABAR dataset of $467.8 imes10^6$ $Bar{B}$
- Untagged $B \rightarrow \omega \, \ell \, \bar{\nu}_{\ell}$; loose neutrino reconstruction.
- $q^2 = (p_\ell + p_{miss})^2$
- Neural Network based selection to suppress continuum and $B \to X_c \, \ell \, \bar{\nu}_\ell$

Signal in 5 bins of q^2 ; $B\bar{B}$ Bkg with true ω in 5 bins of q^2

III.c New $B \rightarrow \omega \, \ell \, \bar{\nu}_{\ell}$ measurement

At a glance:

[to be submitted]

- Full BABAR dataset of $467.8 imes 10^6$ $Bar{B}$
- Tagged measurement of $B
 ightarrow \omega \, \ell \, ar{
 u}_\ell$
- Partial reconstruction of secondary B meson kinematic via $B \to D^{(*)} \, \ell \, \bar{\nu}_\ell$
- Kinematics of *B*-mesons inferred from beam constraints + $D^{(*)} \ell$ and $\omega \ell$ candidates
- $q^2 = (p_B p_\omega)^2$, meas. in *B* rest frame.
- Binned LH fit in $\cos \phi_B^2 q^2$:

 $\cos\phi_B$: angle of tag B 3-momentum and the plane spanned by the $D^{(*)}(n\,\pi)\,\ell$ and $\omega\,\ell$ 3-momenta

 $\frac{q^2/{\rm GeV}^2}{[{\rm PRD}:71014029]} \quad \begin{array}{l} |V_{ub}| \times 10^3 \\ {\rm full} & {\bf 3.39 \pm 0.32 \pm 0.65} \end{array}$

Fitted $\cos \phi_B$ and q^2 spectrum

IV. Comparison of $|V_{ub}|$ from both approaches

- I. Good agreement between $|V_{ub}|$ from different exclusive measurements. Unquenched Lattice predictions for form factors for $B \to \omega \, \ell \, \bar{\nu}_{\ell}$ and $B \to \rho \, \ell \, \bar{\nu}_{\ell}$ highly desirable, considerable width of ρ might make the ω easier target.
- II. Tension between exclusive vs inclusive $|V_{ub}|$

Many ideas floating in the room: poorly understood QCD (\rightarrow SIMBA), new physics (e.g. right-handed currents), poorly understood backgrounds (e.g. $B \rightarrow X_c \ \ell \ \bar{\nu}_\ell$ which has its own mysteries), experimental uncertainties underestimated, etc.

 $|V_{ub}|$ from the combined data-lattice fit from page X for $B \rightarrow \pi \ell \bar{\nu}_{\ell}$ is compared to the values for $B \rightarrow \omega \ell \bar{\nu}_{\ell}$ and $B \rightarrow \rho \ell \bar{\nu}_{\ell}$ determined using the Sum rule calculation of [PRD:71014029]; The right-hand side shows the inclusive result from page Y for two phase-space regions and using the QCD calculation from [JHEP:0710:058].

V. Summary: The status of charmless decays and $|V_{ub}|$

- I. Measurements using the full BABAR dataset for 4 exclusive modes Understand what makes up $\approx 44\%$ of the inclusive $B \rightarrow X_u \ell \bar{\nu}_\ell$ spectra for $m_X < 1.55$ GeV
- II. Inclusive $b \rightarrow u \, \ell \, \bar{\nu}_{\ell}$ measurement using the full BABAR dataset

Tension between inclusive and exclusive values of $|V_{ub}|$ remain:

Inclusive $|V_{ub}|$ from [arXiv:1112.0702] from GGOU with $q^2 - m_X$ fit with $E_l^* > 1.0 \text{ GeV}$ is compared with the combined $B \rightarrow \pi \ell \bar{\nu}_\ell$ data-lattice fit from slide 10. The CKMFitter result is from Moriond 2012 result.

Future plans at BABAR: tagged $B \rightarrow \rho \ell \bar{\nu}_{\ell}$; $B \rightarrow h\bar{h} \ell \bar{\nu}_{\ell}$ with h = p, K, pi, ...Studies for a better understanding of exclusive $b \rightarrow c \ell \bar{\nu}_{\ell}$ background.

Backup

Flavor sector of Standard Model (SM):

 $\mathcal{L} = \frac{g_2}{\sqrt{2}} W^+_\mu \, \bar{u}'_L \, \gamma^\mu \, V_{\text{CKM}} \, d'_L + \text{h.c.}$

V_{CKM} couples Weak and Mass eigenstates

$$V_{\mathsf{CKM}} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

 $V_{\mathsf{CKM}} \ V_{\mathsf{CKM}}^{\dagger} = 1 \rightarrow 6$ triangle equations, e.g.

Unitary triangle: $V_{ud}V_{ub}^* + V_{td}V_{tb}^* + V_{cd}V_{cb}^* = 0$

A.a Motivation

Complex phase of V_{CKM} : $(\bar{\rho} + i\bar{\eta})$

m_X-Spectrum: Inclusive vs Exclusive states

 $\begin{array}{l} \Rightarrow \text{ 'Hybrid' simulation of } b \rightarrow u\,\ell\,\bar{\nu}_\ell\\ \Rightarrow \text{ Amplitudes can be predicted using QCD; fairly independent approaches for Inclusive vs Exclusive} \end{array}$

A.b Experimental Methods

Reconstruction of q^2 :

$$q^{2} = (p_{B} - p_{X})^{2}$$
$$= (p_{\ell} + p_{\text{miss}})^{2}$$

→ Tagged: full or partial reconstruct second *B*-meson:

$$p_B = \left(E_{B_{tag}}, -\vec{p}_{B_{tag}} \right)$$

Incl.: p_X from \sum over recoil side particles Excl.: $p_X = p_h$ from $h = \pi, ...$ candidate

→ Untagged: average over unknown direction of *B*-meson using beam constraints

or
$$p_{\ell}$$
 + missing 4-momentum p_{miss} of event.

Isolation of signal decays:

Loose neutrino reconstruction: (used in untagged)

Infer neutrino kinematics from missing 4-momentum:

$$(E_{\text{miss}}, \vec{p}_{\text{miss}}) = (E_{\text{beam}}, \vec{p}_{\text{beam}}) - \sum_{i} (E_{i}, \vec{p}_{i})$$

sum runs over reconstructed particles from all charged tracks and unmatched calorimeter clusters in event.

 $\begin{array}{l} \mbox{Missing mass squared } MM^2 = E_{miss}^2 - |\vec{p}_{miss}|^2 \\ \rightarrow MM^2/(2E_{miss}) \mbox{ has better resolution} \\ \rightarrow \mbox{Multivariate techniques (NN); cut; or cut(q^2)} \end{array}$

Other Backgrounds

- $e^+ e^-
 ightarrow q ar q$ cuts or NN; validation with off-resonance
- $e^+ e^- \rightarrow b\bar{b}$ cuts or NN; validation with sidebands
 - \rightarrow Semileptonic $b \rightarrow c \ell \bar{\nu}_{\ell}$
 - $50-500 \times$ more abundant than signal decays
 - $m_{\chi} > 1.85$; lower lepton energy endpoint

Measurements in phase space regions where $b \rightarrow c$ strongly suppressed or forbidden

 \rightarrow inclusive decays: model dependence due to unknown parton distribution function

B.a New inclusive $|V_{ub}|$ gallery

B.b New inclusive $|V_{ub}|$ gallery

