A. Eigen, UniversityofBergen
epresenting the BABAR collaboration
G. Eigen, ICHEP12 Melbourne, 13/07/2012

New BABAR Results in 2012

- Study of $B \rightarrow X_{s+d \gamma}$ with $347 \mathrm{fb}^{-1}$ using a fully inclusive method
- γ energy spectrum and γ energy moments
- CP asymmetry
- Study of $B \rightarrow X_{s} \gamma$ with $424 \mathrm{fb}^{-1}$ using a sum of exclusive modes
- γ energy spectrum
- Rate analysis of $B \rightarrow K C^{+}$and $B \rightarrow K^{*} C^{+C}$ modes with $424 \mathrm{fb}^{-1}$
- Branching fractions
- Isospin asymmetries
- CP asymmetries and Lepton flavor ratios
- Angular analyses of $B \rightarrow K^{*} \mathcal{E}^{+} E_{\text {with }} 424 \mathrm{fb}^{-1}$
- K* longitudinal polarization
- Lepton forward-backward asymmetries
- Search for lepton-number violating processes in $B^{+} \rightarrow K^{+} C^{+} t^{(S}$. Robertsen)

Introduction

- $\left.B \rightarrow X_{s} \gamma \& B \rightarrow K^{(*)} I^{+}\right|^{-}$are flavor-changing neutral current (FCNC) processes, forbidden in SM at tree level
- Effective Hamiltonian factorizes short-distance from long-distance effects [$\mathrm{O}_{\left(\alpha_{s}\right)}$]
- 3 effective Wilson coefficients contribute
- C_{7} eff from $E M$ penguin diagram

$$
\left|C_{7}{ }^{\text {eff }}\right| \approx 0.33 \text { from } B\left(B \rightarrow \bar{X}_{5} \gamma\right)
$$

- C_{9} eff from vector part of electroweak diagrams
- C_{10} eff from axial-vector part of EW diagrams
- New Physics adds new loops with new particles
\rightarrow modifies $S M$ values values of C_{7} eff,C_{9} eff,C_{10} eff
\rightarrow introduces new coefficients C_{S} and C_{P}

- Need to measure many observables to extract complex Wilson coefficients

Probe here New Physics at a scale of a few TeV G. Eiaen, ICHEP12 Melbourne, 13/07/2012

$B \rightarrow X_{s} \gamma$ Analyses

- $B \rightarrow X_{s} \gamma$ is largest EM FCNC loop process
- The SM prediction at NNLL (4 loop) is

$$
\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.15 \pm 0.23) \times 10^{-4}\left(E_{\gamma}>1.6 \mathrm{GeV}\right)
$$

Misiak et al., PRL98, 022002 (2007)

- The shape of the photon energy spectrum is important for determining the b quark momentum distribution
- The shape function is similar to that in $B \rightarrow X_{u} e v$ and thus helps in determining $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- In the kinetic scheme, measure m_{b}, energy moments, and HQET parameter $\mu_{\pi}{ }^{2}$ (kinetic energy of b quark)
- The $B \rightarrow X_{s+d \gamma} C P$ asymmetry is sensitive for new physics processes
- BABAR updates results on
- fully inclusive analysis ($383 \pm 4) \times 10^{6} \overline{\mathrm{~B}} \mathrm{~B}$ events - semi inclusive modes $(471 \pm 1) \times 10^{6} \bar{B} B$ events
G. Eigen, ICHEP12 Melbourne, 13/07/2012

Inclusive $B \rightarrow X_{s} \gamma$: E_{γ} Spectrum

- Tag recoiling B via $X e^{ \pm} v$ or $X \mu^{ \pm} v$ decay to suppress continuum background
- Use optimized π^{0} and η vetoes, $E_{\text {miss }}$ and 2 neural networks (for e, μ each) based on event shape variables
- Signal efficiency is $\varepsilon_{s} \sim 2.5 \%$ compared to $\varepsilon_{\text {continuum }}=0.0005 \%$ and $\varepsilon_{B \bar{B}}=0.013 \%$
- Estimate remaining continuum background from 97 continuum sample
- From measured E_{γ} spectrum yield branching fraction after correcting for calorimeter resolution, Doppler smearing and $\varepsilon_{\text {signal }}$
$\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=\left(3.21 \pm 0.15_{\text {stat }} \pm 0.29_{s \gamma s} \pm 0.08_{\text {mod }}\right) \times 10^{-4}\left(E_{\gamma}>1.8 \mathrm{GeV}\right)$

HFAG $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$ G. Eigen, ICHEP12 Melbourne, 13/07/2012 HFAG: arXiv:1010.1589v3 (2011)

Inclusive $B \rightarrow X_{s} \gamma$: Energy Moments

- Total branching fraction from BABAR, Belle and CLEO for different E_{γ} selection are in good agreement
- Measure energy moments
$\langle E\rangle=\left(2.267 \pm 0.019_{\text {stat }} \pm 0.032_{\text {sys }} \pm 0.003_{\text {mod }}\right) \mathrm{GeV}(\mathrm{E}>1.8 \mathrm{GeV})$

$\left\langle(E\langle E\rangle)^{2}\right\rangle=\left(0.0484 \pm 0.0053_{\text {stat }} \pm 0.0077_{\text {sys }} \pm 0.0005_{\text {mod }}\right) G e V^{2}(E>1.8 \mathrm{GeV})$
CLEO: PRL 87, 251807 (2001)
Energy moments from BABAR, Belle and CLEO Belle: PRL 103, 241801 (2009) for different E_{γ} selection are consistent

- this analysis
\square BABAR semiinclusive
\triangle Belle * CLEO
G. Eigen, ICHEP12 Melbourne, 13/07/2012

Inclusive $B \rightarrow X_{s} \gamma:{ }_{c p}$ and New Physics

- Determine B / \bar{B} from the tag charge
- Define CPasymmetry

$$
\mathcal{A}_{C P}\left(\bar{B} \rightarrow X_{s+d} \gamma\right) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow X_{s+d} \gamma\right)-\mathcal{B}\left(B \rightarrow X_{s+d} \gamma\right)}{\mathcal{B}\left(\bar{B} \rightarrow X_{s+d} \gamma\right)+\mathcal{B}\left(B \rightarrow X_{s+d} \gamma\right)}
$$

- Measure $A_{C P}$ after correcting for charge bias and mistagging
$\mathcal{A}_{c P}\left(\bar{B} \rightarrow X_{s+\gamma} \gamma\right)=0.057 \pm 0.06_{\text {stat }} \pm 0.018_{\text {sys }}$
- Extrapolate corrected $\mathcal{V}(B \rightarrow X \gamma)$ from $E_{\gamma}>1.8 \mathrm{GeV}$ to $E_{\gamma}>1.6 \mathrm{GeV}(1.033 \pm 0.006)$

$$
\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.31 \pm 0.16 \pm 0.30 \pm 0.09) \times 10^{-4}
$$

HFAG: arXiv:1010.1589v3 (2011)

- Use this result to constrain new physics in type II two-higgs doublet model $m_{H \pm}<327 \mathrm{GeV}$ is excluded at $95 \% \mathrm{CL}$ independent of $\tan \beta$
G. Eigen, ICHEP12 Melbourne, 13/07/2012

$B \rightarrow X_{s} \gamma$ Semi-Inclusive Analysis

- Use sum of 38 exclusive $X_{s} \gamma$ modes Hadronic mass spectrum with $\leq 4 \pi\left(\leq 2 \pi^{0}\right), 1(3) \mathrm{K}\left(\leq 1 \mathrm{~K}_{\mathrm{s}}{ }_{s}\right), \leq 1 \eta$
- Measured $m_{x s}$ is fitted to kinetic and shape function models

BABAR	kinetic model	shape function model
$\mathrm{m}_{\mathrm{b}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	$4.568_{0.036}^{+0.038}$	$4.579_{0.020}^{+0.032}$
$2\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	$0.450_{0.054}^{+0.054}$	$0.257_{0.039}^{+0.034}$

Benson et al., Nucl.Phys B710, 371 (2005)
Lange et al., Phys Rev D72, 073006 (2005)

World average	kinetic model	shape function model

$m_{b}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	4.591 ± 0.031	$4.620_{0}^{+0.039}$
${ }^{+0.032}$		
$\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	0.454 ± 0.038	$0.288^{+0.054}$
0.074		

HFAG: arXiv:1010.1589v3 (2011)

- Reconstruct $X_{s} \rightarrow E=\frac{m_{B}^{2} m_{X_{s}}^{2}}{2 m_{B}} \longrightarrow$
- Sum of partial branching fractions in each $m_{x_{s}}$ bin is summed to

Photon energy spectrum
 to yield total branching fraction $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=\left(3.29 \pm 0.19_{\text {stat }} \pm 0.48_{s y s}\right) \times 10^{-4}$

Analysis Methodology for $B \rightarrow \mathrm{~K}^{(*)} \ell^{+} e^{-}$

- Fully reconstruct $8 B \rightarrow K^{(*)} C^{+} C^{-}$final states $\left(471 \times 10^{6} B \bar{B}\right)$
- $K, K^{0}{ }_{S}, K^{ \pm} \bar{\pi}$, or $K_{S}^{0} \pi^{ \pm}$recoiling against $e^{+} e^{-}$or $\mu^{+} \mu^{-}$
- Select $e^{ \pm}$with $p>0.3 \mathrm{GeV} / \mathrm{c}$; $\mu^{ \pm}$with $p>0.7 \mathrm{GeV} / \mathrm{c}$
- Require good particle ID for e, μ, K, π; select $\mathrm{K}^{0}{ }_{s} \rightarrow \pi^{+} \pi^{-}$

- Utilize kinematic variables $m_{E s}=\sqrt{\frac{E_{c n}^{2}}{4} p_{B}^{2} \rightleftharpoons}$ and $E=E_{B}^{0} \frac{E_{c n}}{2}$
- Suppress combinatorial $B \bar{B} \& q \bar{q}$ backgrounds with 8 boosted decision trees

- Veto J/ ψ and $\psi(2 S)$ mass regions and use vetoed samples as controls samples for various checks
- For rate asymmetries do 1D (2D) fits in $m_{E S}\left(m_{K^{*}}\right)$ for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$, for angular analyses fit $m_{E S}$ and 1D angular distributions
- Use pseudo experiments to study performance

$\mathrm{B} \rightarrow \mathrm{K}^{(*)} \ell^{+} e^{-}$Branching Fractions

- BABAR * ${ }_{\text {tot }}$ measurements

$$
\begin{aligned}
& \mathcal{B}\left(B \rightarrow K \ell^{+} \ell^{-}\right)=(4.7 \pm 0.6 \pm 0.2) \times 10^{-7} \\
& \mathcal{B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=\left(10.2_{-1.3}^{+1.4} \pm 0.5\right) \times 10^{-7}
\end{aligned}
$$

- BABAR total and partial branching fraction measurements are in good agreement with results from Belle, CDF, LHCb, and the SM predictionsSM based prediction
plus uncertainties (solid line) from Form factor models

$\nabla B A B A R 471$ M B \bar{B}
$■$ CDF $6.8 \mathrm{fb}^{-1}\left(\mu^{+} \mu^{-}\right.$only) PRL 107, 201802 (2011)
\square Belle 657 M B \bar{B}
PRL 103, 171801 (2009)
- LHCb $0.37 \mathrm{fb}^{-1}\left(\mu^{+} \mu^{-}\right.$only $)$ arXiv:1112.3515 (2012)
$B \rightarrow K^{(*)} e^{+} \ell^{-}$Rate Asymmetries

$$
\mathcal{A}_{C P} \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow \bar{K}^{(*)} \ell^{+} \ell^{-}\right)-\mathcal{B}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)}{\mathcal{B}\left(\bar{B} \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)+\mathcal{B}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)} \quad \mathcal{R}_{K^{(+)}} \equiv \frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\left.\mathcal{B}\left(B \rightarrow K^{*}\right) e^{+} e^{-}\right)} \quad s \geq\left(2^{*} m_{\mu}\right)^{2}
$$

All $A_{C P}$ results are consistent with zero \rightarrow agree with small SM value

Krüger et al., PRD 61, 114028 (2000)
Bobeth et al., JHEP 807,106, (2008)
All s

$$
\mathcal{A}_{C P}\left(B \rightarrow K \ell^{+} \ell^{-}\right)=-0.03 \pm 0.14 \pm 0.01
$$

$$
\mathcal{A}_{C P}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=0.03 \pm 0.13 \pm 0.01
$$

BABAR: arXiv:1204.3933 (2012)

All $R_{K(*)}$ results are consistent with unity \rightarrow agree with SM

Ali et al.. PRD 61, 074024 (2000)
All s

$$
\begin{aligned}
& \mathcal{R}_{K}\left(B \rightarrow K \ell^{+} \ell^{-}\right)=1.00_{-0.25}^{+0.31} \pm 0.07 \\
& \mathcal{R}_{K^{*}}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=1.13_{-0.36}^{+0.34} \pm 0.10
\end{aligned}
$$

$B \rightarrow K^{(*)} l^{+} \ell^{-}$Isospin Asymmetry

- $\mathcal{A}_{\mathrm{I}} \equiv \frac{\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{(*) 0} \ell^{+} \ell^{-}\right)-r_{\tau} \mathcal{B}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{\left({ }^{*} \pm\right.} \ell^{+} \ell^{-}\right)}{\mathcal{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{(*) 0} \ell^{+} \ell^{-}\right)+r_{\tau} \mathcal{B}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{()^{ \pm} \pm} \ell^{+} \ell^{-}\right)}$
$r=B_{B^{0}} /_{B^{+}}=1 /(1.071 \pm 0.09)$
- In the SM, M_{I} is expected at $\operatorname{mo}(+1 \%)$

Feldmann \& Matias JHEP 0301, 074 (2003)

- Below J/ $\psi\left(0.1<s<8.12 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$ BABAR measures:

$$
\begin{aligned}
& \mathcal{A}_{I}^{\text {Low }}\left(B \rightarrow K \ell^{+} \ell^{-}\right)=-0.58_{-.37}^{+0.29} \pm 0.02 \\
& \mathcal{A}_{I}^{\text {bow }}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=-0.25_{-0.20}^{+0.17} \pm 0.03
\end{aligned}
$$

- This is consistent with the SM at the 2.1σ and 1.2σ levels
- WA confirms low ${ }_{\text {© }}$ at lows
- BABAR results agree with those from Belle and LHCb
\rightarrow WA: new BABAR, Belle, LHCb
G. Eigen, ICHEP12 Melbourne, 13/07/2012

BABAR: arXiv:1204.3933 (2012)

Angular Observables in $B \rightarrow K^{*} e^{+} \epsilon^{-}$

θ_{1} : angle of I^{+} and B in H rest frame

θ_{K} : angle of K^{+} and B in K^{*} rest frame

- Fit to lepton and K angular distributions to extract K^{*} longitudinal polarization fraction F_{L} and lepton forward-backward asymmetry $A_{F B}$
- $\mathrm{F}_{\mathrm{L}}: \quad \mathrm{W}\left(\cos \theta_{K}\right)=\frac{3}{2} \mathcal{F}_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{3}{4}\left(1-\mathcal{F}_{\mathrm{L}}\right) \sin ^{2} \theta_{K}$
- $A_{F B} \quad W\left(\cos \theta_{\ell}\right)=\frac{3}{4} \mathcal{F}_{\mathcal{L}} \sin ^{2} \theta_{\ell}+\frac{3}{8}\left(1-\mathcal{F}_{\mathcal{L}}\right)\left(1+\cos ^{2} \theta_{\ell}\right)+\mathcal{A}_{F B} \cos \theta_{\ell}$
$B \rightarrow K^{*} E^{+}$Forward-Backward Asymmetry A_{F}
- BABAR A $A_{F B}$ measurements in $B \rightarrow K^{*} C^{+} t^{-}$are the most precise except for LHCb results ($K^{*} \mu^{+} \mu^{-}$)
- Results from BABAR, Belle, CDF and LHCb are in good agreement
- Results are consistent with the $S M$, but do not rule out
 CDF: Note 10047 (2010) the $C_{7}=-C_{7}{ }^{\text {SM }}$ model \rightarrow WA: new BABAR, Belle, CDF, LHCb

Belle: PRL 103, 171801 (2009) LHCb: arXiv:1112.3515 (2012)

- In low mass region ($1<s<6 \mathrm{GeV}^{2} / \mathrm{c}^{2}$) measure

BABAR: $\mathcal{A}_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)=0.26_{-0.30}^{+0.27} \pm 0.07$
Ali et al. PRD 61, 074024 (2000)
Buchalla et al. PRD 63, 014015 (2000)
Ali et al. PRD 66, 034002 (2002)
Krüger et al. PRD 61, 114028 (2002)
Krüger \& Matias PRD71, 094009 (2005)
C. Bobeth et al. JHEP 1007, 098 (2010)
world average: $\mathcal{A}_{F B}^{\mathrm{WA}}\left(\mathrm{K}^{*} \ell \ell\right)=0.11_{-0.09}^{+0.08}$
$S M: \mathcal{A}_{F B}^{S M}=-0.05_{-0.04}^{+0.03}\left(1<\mathrm{s}<6 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$

K^{*} Longitudinal Polarization F_{L} in $B \rightarrow K^{*} C^{\star} C$

- BABAR F measurements in $B \rightarrow K^{*} \ell^{+} \ell^{-}$are the most precise except for LHCb results ($\mathrm{K}^{*} \mu^{+} \mu^{-}$)
- Results from BABAR, Belle, CDF and LHCb are in good agreement
- Results are consistent with the SM, but do not rule out the $C_{7}=-C_{7}{ }^{S M}$ model

CDF: Note 10047 (2010) Belle: PRL 103, 171801 (2009) LHCb: arXiv:1112.3515 (2012)

- In low mass region ($1<s<6 \mathrm{GeV}^{2} / \mathrm{c}^{2}$) measure

BABAR: $\mathcal{F}_{L}=0.25_{-0.08}^{+0.09} \pm 0.03$

SM: $\mathcal{F}_{\mathcal{L}}^{S M}=0.73_{-0.23}^{+0.13}\left(1<s<6 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
world average: $\mathcal{F}_{L}=0.41 \pm 0.06$
C. Bobeth et al. arXiv:1006.5013

Krüger \& Matias PRD71, 094009 (2005)

Conclusion

- New BABAR B $\rightarrow X_{s} \gamma$ results
- branching fractions from inclusive and semi-inclusive analyses are in good agreement with SM prediction
- CP asymmetry is consistent with zero
- New measurements on photon energy moments
- New measurements on m_{b} and $\mu_{\pi}{ }^{2}$
- Set limit on charged Higgs boson $m_{H \pm}>327 \mathrm{GeV}$ @ $95 \% \mathrm{CL}$
- New BABAR $B \rightarrow K\left(^{*}\right) \mid+1$ results
- Partial and total branching fractions are in good agreement with SM
- CP asymmetries and lepton-flavor ratios agree SM prediction
- Isospin asymmetry is consistent with SM, but is lower at small s
- $A_{F B}$ and F_{L} are consistent with the SM prediction, but do not rule out flipped $C_{7}\left(C_{7}=-C_{7}{ }^{\text {SM }}\right)$ model
- Significant progress will come from LHCb and the Super B-factories \rightarrow idea: probe new angular observable that help in revealing small discrepancies wrt the SM

Backup Slides

$\mathrm{B} \rightarrow \mathrm{X}_{s} \gamma$: Corrected E_{γ} Spectrum

- First, correct measured E_{γ} spectrum for selection efficiency taking into account the additional correlated errors between the selection efficiency and background estimation
- Next, unfold the resolution smearing and correct resultant spectrum for detector acceptance
- Resulting E $_{\gamma}$ spectrum still includes Doppler smearing
\rightarrow this spectrum is used for comparison with theory
- Dominant uncertainty in the bins of the unfolded E_{γ} spectrum result from a shift of photon energy scale by $\pm 0.3{ }^{\circ}$

Energy Range (GeV)	Change (events)	
	$E_{\gamma}^{* \text { true }}$ Bins	E_{γ}^{B} Bins
1.53 to 1.60	222.1	220.2
1.60 to 1.70	190.6	191.0
1.70 to 1.80	261.1	261.6
1.80 to 1.90	354.4	354.8
1.90 to 2.00	493.2	492.0
2.00 to 2.10	622.9	622.2
2.10 to 2.20	640.3	658.5
2.20 to 2.30	428.4	461.1
2.30 to 2.40	528.7	598.9
2.40 to 2.50	1184.2	1292.5
2.50 to 2.60	1080.6	967.6
2.60 to 2.70	490.8	475.7

Angular Distributions for $\left.\left.\mathrm{B} \rightarrow \mathrm{K}^{(*)}\right|^{+\mid}\right|^{-}$

- $A_{F B}$ results from interplay between $C_{9}\left(q^{2}\right) C_{10}$ and $C_{7} C_{10} / q^{2}$

$$
\frac{d \mathcal{A}_{F B}}{d q^{2}} \propto-\left\{\operatorname{Re}\left[C_{9}^{\text {eff }}\left(q^{2}\right) C_{10}\right] V A_{1}+\frac{m_{b} m_{B}}{q^{2}} \operatorname{Re}\left[C_{7}^{\text {eff }} C_{10}\right]\left[V T_{2}\left(1-\frac{m_{K^{*}}}{m_{B}}\right)+A_{1} T_{1}\left(1+\frac{m_{K^{*}}}{m_{B}}\right)\right]\right\} K^{\star} I^{+1}
$$

- Recent SM calculations focus on low q^{2}-region
$\mathrm{K}^{*}+{ }^{+}$
$\mathrm{O}\left(\alpha_{s}\right)$

Feldmann \& Matias JHEP 0301, 074 (2003)
$X_{s} I^{+1}$
$O\left(a_{s}^{2}\right)$

Huber, Hurth \& Lunghi, Nucl.Phys B802, 40 (2008)

- In the SM, $A_{F B}$ crosses zero around $q^{2} 0=3.5-4.5 \mathrm{GeV}^{2}$

Angular Distributions for $\mathrm{B} \rightarrow \mathrm{K}^{(*)} \mathrm{I}^{+\mid}$

- Results on ${ }^{*}$ and ${ }_{F B}$

L

$s\left(\mathrm{GeV}^{2} / c^{4}\right)$	$B \rightarrow K^{*} \ell^{+} \ell^{-}$	$B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$	$B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}$
$0.1-2.00$	$0.23_{-0.09}^{+0.10} \pm 0.04$	$0.35_{-0.12}^{+0.13} \pm 0.04$	$-0.06_{-0.12}^{+0.14} \pm 0.06$
$2.00-4.30$	$0.15_{-0.14}^{+0.17} \pm 0.04$	$0.34_{-0.22}^{+0.22} \pm 0.08$	$-0.19_{-0.24}^{+0.24} \pm 0.04$
$4.30-8.68$	$0.32_{-0.12}^{+0.12} \pm 0.06$	$0.50_{-0.15}^{+0.18} \pm 0.05$	$0.14_{-0.12}^{+0.15} \pm 0.05$
$10.09-12.86$	$0.40_{-0.12}^{+0.12} \pm 0.06$	$0.48_{-0.12}^{+0.13} \pm 0.10$	$0.06_{-0.25}^{+0.26} \pm 0.05$
$14.18-16.00$	$0.43_{-0.13}^{+0.10} \pm 0.09$	$0.42_{-0.16}^{+0.12} \pm 0.11$	$0.58_{-0.35}^{+0.34} \pm 0.06$
>16.00	$0.55_{-0.17}^{+0.15} \pm 0.03$	$0.47_{-0.20}^{+0.18} \pm 0.13$	$0.71_{-0.32}^{+0.30} \pm 0.03$
$1.00-6.00$	$0.25_{-0.08}^{+0.09} \pm 0.03$	$0.47_{-0.13}^{+0.13} \pm 0.04$	$0.03_{-0.10}^{+0.11} \pm 0.03$

$s\left(\mathrm{GeV}^{2} / c^{4}\right)$	$B \rightarrow K^{*} \ell^{+} \ell^{-}$	$B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$	$B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}$
$0.1-2.00$	$0.14_{-0.16}^{+0.15} \pm 0.20$	$-0.07_{-0.20}^{+0.20} \pm 0.19$	$0.45_{-0.24}^{+0.18} \pm 0.15$
$2.00-4.30$	$0.40_{-0.22}^{+0.18} \pm 0.07$	$0.21_{-0.34}^{+0.23} \pm 0.11$	$0.73_{-0.42}^{+0.27} \pm 0.07$
$4.30-8.68$	$0.15_{-0.16}^{+0.16} \pm 0.08$	$0.20_{-0.20}^{+0.19} \pm 0.08$	$0.06_{-0.26}^{+0.27} \pm 0.07$
$10.09-12.86$	$0.36_{-0.17}^{+0.16} \pm 0.10$	$0.35_{-0.16}^{+0.16} \pm 0.11$	$0.17_{-0.33}^{+0.33} \pm 0.16$
$14.18-16.00$	$0.34_{-0.15}^{+0.08} \pm 0.07$	$0.31_{-0.19}^{+0.11} \pm 0.13$	$0.42_{-0.23}^{+0.35} \pm 0.09$
>16.00	$0.34_{-0.21}^{+0.19} \pm 0.07$	$0.34_{-0.26}^{+0.17} \pm 0.08$	$0.17_{-0.38}^{+0.38} \pm 0.11$
$1.00-6.00$	$0.17_{-0.14}^{+0.12} \pm 0.07$	$0.02_{-0.18}^{+0.16} \pm 0.07$	$0.31_{-0.14}^{+0.12} \pm 0.07$

G. Eiqen, ICHEP12 Melbourne, 13/07/2012

