International Conference for High Energy Physics, 4-12 July 2012, Melbourne

New particle spectroscopy update

Roman Mizuk ITEP, Moscow

lukeobrien.com.au

Spectroscopy results @ ICHEP2012 (1)

 $\begin{array}{lll} \textbf{BESIII} & \text{Precise measurement of } \eta_c \,,\, \eta_c' \,,\, h_c \text{ parameters} & \text{Shan Jin} \\ & \text{New decay modes of } J/\psi \,,\, \psi' \,,\,\, \chi_{cJ} \,,\, \eta_c \\ & \text{PWA } J/\psi \rightarrow \gamma \text{ pp} \\ & \text{PWA } J/\psi \rightarrow \gamma \, \omega \phi \\ & \text{PWA } J/\psi \rightarrow \gamma \, \eta \eta \\ & \text{Confirmation of X(1835) in } J/\psi \rightarrow \gamma \, \pi^+ \pi^- \eta',\, +\text{two new} \\ & \text{First observation of isospin violating mode } \eta(1405) \rightarrow f_0(980)\pi^0 \\ & \text{First observation of } \psi' \rightarrow \eta_c' \, \gamma \end{array}$

KEDR Precise measurement of $\psi(2S)$ and $\psi(3770)$ parameters Todyshev

BaBarStudy of $\gamma\gamma \rightarrow \eta_c(1S) \pi^+\pi^-$
Update on Y(4260) using $e^+e^- \rightarrow J/\psi\pi^+\pi^-$
Confirmation of Y(4660) using $e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$
Confirmation of $\gamma\gamma \rightarrow X(3915) \rightarrow J/\psi\omega$
Search for charged Z⁺ states in B $\rightarrow \chi_{c1} K\pi$
Precise measurement of D* widthSantoro

Spectroscopy results @ ICHEP2012 (2)

BELLE Evidence for resonant structures in $\gamma\gamma \rightarrow \omega\omega$, $\omega\phi$, $\phi\phi$ Nakazawa Study of $\gamma\gamma \rightarrow \eta'\pi^+\pi^-$ Yabsley First evidence for ψ_2 Search for X(3872)^{C-} in B \rightarrow (J/ $\psi\eta$) K decays Study of $e^+e^- \rightarrow J/\psi\eta$ Amplitude analysis of $B \rightarrow J/\psi K\pi$ Barrett Measurement of BF[$\Upsilon(2S) \rightarrow \Upsilon(1S) \eta$] First observation of $\Upsilon(1S, 2S) \rightarrow \text{light hadrons}$ Search for $\Upsilon(2S) \rightarrow$ baryon pairs Search for $\chi_{bl} \rightarrow$ double charmonium Search for Ξ_5^{--} pentaquark and H dibaryon in $\Upsilon(1S, 2S)$ decays R_b scan Bondar First evidence for $\eta_{\rm h}(2S)$ Observation of $Z_{h}(10610) \rightarrow BB^{*}$ and $Z_{h}(10650) \rightarrow B^{*}B^{*}$ Evidence for $Z_{\rm b}^{0}$ Observation of $\Upsilon(5S) \rightarrow \Upsilon(1S,2S) \eta$ and $\Upsilon(5S) \rightarrow \Upsilon(1D) \pi^+\pi^-$

Spectroscopy results @ ICHEP2012 (3)

CDF	Observation of Ξ_b^{0} GoEvidence for P-wave Λ_b^* resonance	orelov
D0	Observation of $X_b \rightarrow \Upsilon(1S)\gamma$ But	uszello
ATLAS	First observation of χ_b (3P) Masses and life-times of b-hadrons	F oms
CMS	First observation of Ξ_{b}^{*} baryon χ_{c2}/χ_{c1} cross-section ratio, Υ (nS) cross-section	Kai Yi
LHCb	First observation of P-wave excited $\Lambda_{\rm b}{}^{*}$ resonances b-baryons mass measurements Study of $\rm D_{sJ}$	Märki
	My talk: Heavy quarkonium (-like) states New baryons	

Apologies: time is limited so I cannot cover all results

Introduction

Charmonium & bottomonium played important role in establishing QCD as theory of strong interactions

Quark Model successfully describes + spectrum + annihilation widths + radiation widths

Breakdown for high excitations

- new dynamics ?
- exotic states? (not $q\overline{q}$ or qqq)

molecule

hadrocharmonium

Observation of h_b(1P,2P)

 $e^+e^- \rightarrow \Upsilon(5S) \rightarrow h_b(nP)(\pi^+\pi^-)$ reconstructed, use $M_{miss}(\pi^+\pi^-)$

Large $h_b(1,2P)$ production rates c.f. CLEO $e^+e^- \rightarrow \psi(4170) \rightarrow h_c \pi^+\pi^-$

Observation of h_b(1P,2P)

 $e^+e^- \rightarrow \Upsilon(5S) \rightarrow h_b(nP)(\pi^+\pi^-)$ reconstructed, use $M_{miss}(\pi^+\pi^-)$

Large $h_b(1,2P)$ production rates c.f. CLEO $e^+e^- \rightarrow \psi(4170) \rightarrow h_c \pi^+\pi^-$

 $h_b(nP)$ decays are a source of $\eta_b(mS)$

Belle result decreases tension with theory

First measurement $\Gamma = 10.8 + 4.0 + 4.5 - 3.7 - 2.0 \text{ MeV}$ as expected

Observation of $h_b(1P,2P) \rightarrow \eta_b(1S) \gamma$

E(γ) (GeV)

First evidence for $\eta_b(2S)$

Godfrey Rosner PRD66,014012(2002)

c.f. BESIII BF[h_c(1P) $\rightarrow \eta_c(1S) \gamma$] = 54.3±8.5 % 39%

"Signal" of exclusively reconstructed η_b (2S)

Dobbs, Metreveli, Seth, Tomaradze, Xiao, arxiv:1204.4205 CLEO data

Large $\Delta M_{HF}(2S)$ CLEO 48.7±2.7 MeV \leftarrow strong disagreement with theory $\leftarrow 5\sigma$ Belle 24.3 $^{+4.0}_{-4.5}$ MeV \leftarrow agrees with theory

Reported excess is unlikely to be the $\eta_b(2S)$ signal

Observation of χ_b (3P)

In agreement with theoretical expectations

Charged bottomonium-like states

Anomalies in $\Upsilon(5S) \rightarrow (b\overline{b}) \pi^+\pi^-$ transitions

Anomalies in $\Upsilon(5S) \rightarrow (b\overline{b}) \pi^+\pi^-$ transitions

 h_b production mechanism? \Rightarrow Study resonant structure in h_b (mP) $\pi^+\pi^-$

Resonant structure of $\Upsilon(5S) \rightarrow (b\overline{b}) \pi^+\pi^-$

Phase btw Z_b and Z'_b amplitudes is ~0° for $\Upsilon(nS)\pi\pi$ and ~180° for $h_b(mP)\pi\pi$

Fit results

Average over 5 channels

 $M_{1} = 10607.2 \pm 2.0 \text{ MeV}$ $\Gamma_{1} = 18.4 \pm 2.4 \text{ MeV}$ $M_{Zb} - (M_{B} + M_{B^{*}}) = + 2.6 \pm 2.1 \text{ MeV}$ $M_{2} = 10652.2 \pm 1.5 \text{ MeV}$ $\Gamma_{2} = 11.5 \pm 2.2 \text{ MeV}$ $M_{Zb'} - 2M_{B^{*}} = + 1.8 \pm 1.7 \text{ MeV}$

Angular analysis \Rightarrow both states are $J^P = 1^+$ Decays $\Rightarrow I^G = 1^+$ (C= -)

Proximity to thresholds favors molecule over tetraquark $\begin{array}{c|c} Z_b \sim & | & B & B^* \end{array} \rangle = | & \textcircled{bb} \\ S-wave \\ Z_b' \sim & | & B^*B^* \end{array} \rangle = | & \textcircled{bb} \\ \hline \\ & & & & \\ \hline \\ \\ \\ & & & \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline$

Phase btw Z_b and Z'_b amplitudes is ~0° for $\Upsilon(nS)\pi\pi$ and ~180° for $h_b(mP)\pi\pi$ Resonant behavior of Z_b amplitudes (intensity & phase). Properties of Z_b states are consistent with molecular structure.

Fit results

 $Z_{\rm b}(10610) \equiv Z_{\rm b}$

Phase btw Z_b and Z'_b amplitudes is ~0° for $\Upsilon(nS)\pi\pi$ and ~180° for $h_b(mP)\pi\pi$ Resonant behavior of $Z_{\rm b}$ amplitudes (intensity & phase). Properties of Z_b states are consistent with molecular structure.

 $Z_{\rm b}(10650) \equiv Z_{\rm b}'$

Origin of structure at threshold

Fit data to various predictions

5.7 σ (1.0 ± 1.4) %

BFs are consistent with previous measurement

 $(2.12 \pm 0.29 \pm 0.36)$ %

B*B*

Evidence for a neutral Z_b partner

[Bondar]

preliminary

 $\sum_{i=1}^{30} \frac{60}{10} + \frac{1}{10} + \frac{1}{1$

EN!

 $e^+e^- \rightarrow \Upsilon(5S) \rightarrow \Upsilon(nS)\pi^0\pi^0$

BF[$\Upsilon(5S)$ → $\Upsilon(1S)\pi^{0}\pi^{0}$] = (2.25±0.11±0.20) 10⁻³ BF[$\Upsilon(5S)$ → $\Upsilon(2S)\pi^{0}\pi^{0}$] = (3.79±0.24±0.49) 10⁻³ in agreement with isospin relations

Dalitz plot analysis of $\Upsilon(1S,2S)\pi^0\pi^0 \Rightarrow$

 Υ (2S) π⁰π⁰ : Z_b(10610)⁰ 5.3σ (4.9σ w/ syst.) Z_b(10650)⁰ ~ 2σ

 Υ (1S) $\pi^0\pi^0$: Z_b signals not significant

Yields agree with isospin expectations

 \Rightarrow Confirmation that Z_b is an isotriplet

Charmonium (-like) states

- (Recently observed) Charmonia with conventional properties all states below DD threshold are observed
- XYZ states with anomalous properties

Expectations

Radiative decay is seen $\Rightarrow \Gamma \sim O(10 \text{keV})$

ightarrow DD is forbidden (unnatural spin-parity) \Rightarrow small Γ ightarrow $\chi_{c1}\gamma$ is prominent (E1)

3^{-−}→ DD̄ is allowed ⇒ Γ ~O(10MeV) → $\chi_{c1}\gamma$ is suppressed (E2) → $\chi_{c2}\gamma$ is allowed (E1) , but small – not found

Evidence for $\psi_2(1D)$ candidate L=2 S=1

X(3872) Discovery by Belle 2003 Studied also by CDF,D0, BaBar,LHCb,CMS

PDG'12

$$M_{X(3872)} - (M_{D^0} + M_{D^{*0}}) = -0.16 \pm 0.32 \text{ MeV}$$

Relative BF $J/\psi \rho$ 1isospin violation $J/\psi \omega$ 0.8 ± 0.3 isospin violation $J/\psi \gamma$ 0.21 ± 0.06 $\Rightarrow \Gamma$ is O(10keV) $D^0 \overline{D^{*0}}$ ~10

Most likely interpretation: DD* molecule with admixture of $\chi_{c1}(2P)$ isospin violation isospin violation

> Urgent issues : J^{PC} = 1⁺⁺ or 2⁻⁺ ? absolute BF, lineshape, ...

States with anomalous $\Gamma(J/\psi\pi\pi, \psi'\pi\pi, J/\psi\omega)$

Study of $\overline{B} \rightarrow \psi' \pi^+ K^-$ at Belle & BaBar

Belle and BaBar data look very similar Conclusions are different: Belle : observation of Z(4430) – resonance in $(\psi'\pi)$ channel BaBar : structure is due to contributions of $(K\pi)$ waves

Different conclusions are due to different approaches :

Belle : Dalitz analysis using isobar model (Breit-Wigner amplitudes, helicity formalizm) description of amplitudes is model-dependent

BaBar : fit $K\pi$ helicity angle distribution in M($K\pi$) bins (no 2D fit) unphysical behaviour of amplitude is possible

High statistics data from LHC can help to clarify

New results on baryons

Beauty baryons

[Märki, Gorelov]

First P-wave excitation and $\Xi_{\rm h}$ spin-excitation Masses are in agreement w/ expectations

Summary

Many new results from hadronic machines and B- and c-factories

<u>Exotics</u>: two charged Z_b^+ bottomonium-like states in 5 decay modes: $\Upsilon(1S)\pi^+, \Upsilon(2S)\pi^+, \Upsilon(3S)\pi^+, h_b(1P)\pi^+, h_b(2P)\pi^+$ NEW: $Z_b \rightarrow BB^*, Z_b^{\prime} \rightarrow B^*B^*$, neutral member of isotriplet

<u>Quarkonia</u>: ψ_2 , η_b (2S), h_b (1P), h_b (2P), χ_b (3P)

<u>Baryons</u>: spin excitation Ξ_{b}^{*} , P-wave Λ_{b} baryons, NEW: two N*

Ground states & low excitations – no surprises

High excitations – progress in clarifying experimental situation, pattern :

- 1. States close to thresholds w/ molecular structure: X(3872), Z_b(10610), Z_b(10650)
- 2. States w/ anomalous partial Γ to lower quarkonia:

 ϕ (2170), Y(4260), Y(4360), Y(4660), Y(5S), charged Z ? 3. States w/ "wrong" masses: X(3940), X(4160)

Similar phenomena in $s\overline{s}$, $c\overline{c}$ and $b\overline{b}$ sectors. Some/many of these states cannot be conventional quarkonia. However, the exact interpretation is still unclear.

Input from high-statistics measurements is important: LHC, Super B-factories. 34

Back-up

Search for X(4140) in LHCb

2.4 σ disagreement

- The most sensitive measurement to date
- Don't find evidence for this state in 2.4 σ disagreement with the CDF

Observation of two new N*

preliminary

First PWA for baryon spectroscopy from BESIII data

Dalitz distributions for events in Y(nS) signal regions.

 $A(Z_{b1}^+) + A(Z_{b2}^+) + A(f_0(980)) + A(f_2(1270)) + A(\mathbf{NR})$

9.43 GeV <MM(π⁺π⁻) < 9.48 GeV

10.05 GeV <MM(π⁺π⁻) < 10.10 GeV

 $10.33 \text{ GeV} < \text{MM}(\pi^+\pi^-) < 10.38 \text{ GeV}$

To exclude contamination from gamma conversions we require: $M^{2}(\pi^{+}\pi^{-}) > 0.20 \text{ GeV}^{2}$ $M^{2}(\pi^{+}\pi^{-}) > 0.16 \text{ GeV}^{2}$ $M^{2}(\pi^{+}\pi^{-}) > 0.10 \text{ GeV}^{2}$