Recent Tau Physics Results from BaBar

Tau's at BaBar

- BaBar recorded 437 million $\tau^+\tau^-$ pairs produced by PEP-II at SLAC in e^+e^- collisions on / off the Y(4S) resonance between 1999 and 2008
- Rich program of tau physics at BaBar
 - 25 papers on searches for Lepton Flavor Violation, Lepton Number Violation, 2^{nd} class currents and measurements of V_{us} , and various branching fractions
 - Today I'll present a search for CP violation and a study of 3- and 5-prong tau decays

- Generic Tau event selection
 - Kinematic-based selection for prompt tracks, neutral clusters and K_S daughters
 - Require lepton tag (e or μ) in hemisphere opposite to signal using event thrust axis
 - Magnitude of event thrust 0.92 0.99 to reject Bhabha, $\mu^+\mu^-$ and $q\bar{q}$ events
 - Reject events in which signal candidate has invariant mass greater than 1.8 GeV

CP Violation in
$$\tau^- \to K_S \pi^- (\geq 0 \pi^0) v_{\tau}$$

Phys. Rev. D85, 031102 (2012), Erratum-ibid. D85, 099904 (2012)

CP Violation in Tau Decays

- SM predicts vanishingly small CP violation in tau decays except for decays that include a K_S meson in the final state [Bigi and Sanda, PLB 625, 47 (2005)]
- Expect a decay rate asymmetry between $\tau^- \to K_S \pi^- (\geq 0 \pi^0) \ v_\tau$ and c.c.
- Rate asymmetry depends on the reconstruction efficiency as function of K_S decay time [Grossman and Nir, arXiv:1110.3790]
- Expect a net rate asymmetry for the decay $\tau^- \to K_S \pi^- (\ge 0 \ \pi^0) \ v_\tau$ with BaBar reconstruction efficiency

$$A_{Q}^{SM} = \frac{\mathcal{B}(\tau^{+} \to K_{S}^{0} \pi^{+} (\geq 0 \pi^{0}) \overline{v}_{\tau}) - \mathcal{B}(\tau^{-} \to K_{S}^{0} \pi^{-} (\geq 0 \pi^{0}) v_{\tau})}{\mathcal{B}(\tau^{+} \to K_{S}^{0} \pi^{+} (\geq 0 \pi^{0}) \overline{v}_{\tau}) + \mathcal{B}(\tau^{-} \to K_{S}^{0} \pi^{-} (\geq 0 \pi^{0}) v_{\tau})} = (0.36 \pm 0.01)\%$$

- Previous searches for CP violation in tau decays
 - Null results in studies of CP-violating angular distributions in $\tau^- \to K_S \pi^- \nu_\tau$ (Belle, PRL 107, 131801 (2011); CLEO, PRL 88, 111803 (2002)) and $\tau^- \to \pi^- \pi^0 \nu_\tau$ (CLEO, PRD 64, 092005 (2001))

$\tau^- \to K_S \pi^- (\ge 0 \pi^0) v_\tau Selection (1)$

• Refine selection with two multi-variate likelihood ratios

Likelihood ratio $y(\tau)$ (based on $E_{visible}$, # of neutral clusters in tag and signal hemispheres, magnitude of thrust, event p_T) discriminates between tau pair and $q\bar{q}$ events.

Likelihood ratio $y(K_S)$ (based on K_S mass, transverse decay length, momentum and polar angle) discriminates between true and fake K_S candidates

- Background estimates
 - Shapes of $q\bar{q}$ and non- K_S tau backgrounds are determined from MC
 - Background levels normalized to data background in regions of $y(\tau) < 0.1$ and $y(K_S) < 0.1$

$\tau^- \to K_S \pi^- (\ge 0 \pi^0) v_\tau Selection (2)$

Signal and backgrounds

 After all selection criteria are applied there are 199,064 (140,602) candidates in the e-tag (μ-tag) sample

Selected tau signal sample composition:

Source	Fractions (%)	
	e tag	μ tag
$\tau^- \to \pi^- K_S^0 (\geq 0\pi^0) \nu_\tau$	78.7 ± 4.0	78.4 ± 4.0
$ au^- o K^- K_S^0 (\geq 0 \pi^0) \nu_{ au}$	4.2 ± 0.3	4.1 ± 0.3
$ au^- ightarrow \pi^- K^{\tilde{0}} \bar{K}^0 \nu_{ au}$	15.7 ± 3.7	15.9 ± 3.7
Other background	1.40 ± 0.06	1.55 ± 0.07

Observed raw CP asymmetry

$$A_Q^{raw}(e - tag) = (-0.32 \pm 0.23)\%$$

 $A_Q^{raw}(\mu - tag) = (-0.05 \pm 0.27)\%$

- *CP* asymmetry in *MC* and data control sample $\tau^- \to \pi^- \pi^+ \pi^- v_{\tau}$ is zero within errors (data: $\pm 0.12\%$ (e-tag), $\pm 0.08\%$ (μ -tag))

Signal invariant mass cut

CP Asymmetry Systematics and Corrections

- Difference in K^0 and \overline{K}^0 nuclear cross-sections modifies observed A_Q^{raw} by $-(0.07\pm0.01)\%$ [Ko et al., arXiv:1006.1938]
- Correction to the signal CP asymmetry due to dilution from $\tau^- \to K^- K_S v_\tau$ and $\tau^- \to K^0 \overline{K}{}^0 v_\tau$ decay modes based on the contributions and CP asymmetries of these modes. Obtain signal A_O by dividing asymmetry by 0.75 ± 0.04
- Result is dominated by statistical error. Largest systematic error in A_Q comes from statistical uncertainty in CP data control sample

Systematic errors in A_Q measurement:

	e tag	μ tag
Detector and selection bias	0.12%	0.08%
Background subtraction	0.05%	0.06%
K^0/\bar{K}^0 interaction	0.01%	0.01%
Total	0.13%	0.10%

• Observed CP asymmetry

$$A_{Q} = \frac{\mathcal{B}(\tau^{+} \to K_{S}^{0} \pi^{+} (\geq 0\pi^{0}) \overline{v}_{\tau}) - \mathcal{B}(\tau^{-} \to K_{S}^{0} \pi^{-} (\geq 0\pi^{0}) v_{\tau})}{\mathcal{B}(\tau^{+} \to K_{S}^{0} \pi^{+} (\geq 0\pi^{0}) \overline{v}_{\tau}) + \mathcal{B}(\tau^{-} \to K_{S}^{0} \pi^{-} (\geq 0\pi^{0}) v_{\tau})} = (-0.36 \pm 0.23 \pm 0.11)\%$$

• This is 2.8σ away from the expected Standard Model asymmetry $(+0.36 \pm 0.01)\%$

High-multiplicity 3- and 5-prong Tau Decays

$$\tau^- \rightarrow (3\pi)^- \eta \ v_{\tau}$$

- Final states
 - $\pi^-\pi^+\pi^ \eta$ ν_{τ} , $\eta \rightarrow \gamma \gamma$, $\pi^+\pi^-\pi^0$, $3\pi^0$
 - $\pi^-\pi^0\pi^0$ η ν_{τ} , $\eta \rightarrow \pi^+\pi^-\pi^0$
- Branching fractions

$$\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{+}\pi^{-}\eta \nu_{\tau}) = (2.25 \pm 0.07 \pm 0.12) \times 10^{-4}$$
$$\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{0}\pi^{0}\eta \nu_{\tau}) = (2.0 \pm 0.3 \pm 0.2) \times 10^{-4}$$

- Expect ratio of $\mathcal{B}s$ to be 2:1, if decays dominated by $\tau^- \to \pi^- f_1 v_{\tau}$
- Results in good agreement with CLEO measurements of $(2.3 \pm 0.5) \times 10^{-4}$ and $(1.5 \pm 0.5) \times 10^{-4}$, resp. [PRL 86, 4467 (2001)]
- Theory predicts [Li, PRD 57, 1790 (1998)]

$$\mathcal{B}(\tau^- \to \pi^- \pi^+ \pi^- \eta \nu_{\tau}) = 2.93 \times 10^{-4}$$

$\tau^- \to \pi^- f_1(1285) \ v_{\tau}$

Final states

$$-f_1 \rightarrow 2\pi^+ 2\pi^-$$
, $\eta \pi^+ \pi^-$, $\eta \rightarrow \gamma \gamma$, $\pi^+ \pi^- \pi^0$, $3\pi^0$

- Branching fractions
 - Using only $f_1 \rightarrow 2\pi^+ 2\pi^ (\mathcal{B}(f_1 \rightarrow 2\pi^+ 2\pi^-) = (11.0^{+0.7}_{-0.6})\%)$ $\mathcal{B}(\tau^- \rightarrow \pi^- f_1 v_{\tau}) = (4.73 \pm 0.28 \pm 0.45) \times 10^{-4}$
 - Bin agreement with CLEO measurement [PRL 79, 2406 (1997)]

$$\mathcal{B}(\tau^- \to \pi^- f_1 v_{\tau}) = (5.8^{+1.4}_{-1.3} \pm 1.8) \times 10^{-4}$$

– Theory predicts [Li, PRD 55, 1436 (1997)]

$$\mathcal{B}(\tau^- \to \pi^- f_1 v_{\tau}) = 2.9 \times 10^{-4}$$

Also

$$\mathcal{B}(\tau^{-} \to \pi^{-} f_{1} \nu_{\tau}) \mathcal{B}(f_{1} \to \pi^{+} \pi^{-} \eta) = (1.26 \pm 0.06 \pm 0.06) \times 10^{-4}$$
using $\mathcal{B}(f_{1} \to \pi^{+} \pi^{-} \eta) = 0.35 \pm 0.03 \text{ (PDG)}$

$$\mathcal{B}(\tau^{-} \to \pi^{-} f_{1} \nu_{\tau}) = (3.59 \pm 0.19 \pm 0.35) \times 10^{-4}$$

$$\mathcal{B}(f_1 \to \pi^+ \pi^- \eta) = \frac{\left[\mathcal{B}(\tau^- \to \pi^- f_1 v_\tau) \mathcal{B}(f_1 \to \pi^+ \pi^- \eta)\right]}{\mathcal{B}(\tau^- \to \pi^- f_1 v_\tau)} = 0.265 \pm 0.022 \pm 0.027$$

Mass measurement

$$m(f_1) = (1281.16 \pm 0.39 \pm 0.45) \text{ MeV}$$
 $PDG: m(f_1) = (1281.8 \pm 0.6) \text{ MeV}$

$$\tau^- \rightarrow (3\pi)^- \omega v_{\tau}$$

• Final states

$$- \pi^{-}\pi^{+}\pi^{-} \omega v_{\tau}, \pi^{-}\pi^{0}\pi^{0} \omega v_{\tau} (\omega \to \pi^{+}\pi^{-}\pi^{0})$$

Branching fractions

$$\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{+}\pi^{-}\omega v_{\tau}) = (0.84 \pm 0.04 \pm 0.06) \times 10^{-4}$$
$$\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{0}\pi^{0}\omega v_{\tau}) = (0.73 \pm 0.12 \pm 0.10) \times 10^{-4}$$

- Results in good agreement with CLEO measurements [PRL 86, 4467 (2001)]

$$\mathcal{B}(\tau^- \to \pi^- \pi^+ \pi^- \omega v_{\tau}) = (1.2 \pm 0.2 \pm 0.1) \times 10^{-4}$$

$$\mathcal{B}(\tau^- \to \pi^- \pi^0 \pi^0 \omega v_{\tau}) = (1.4 \pm 0.4 \pm 0.3) \times 10^{-4}$$

 Gao and Li suggest modes are dominated by intermediate π ρ ω hadronic state and predict [Gao and Li, EPJC 22, 283 (2001)]

$$\mathcal{B}(\tau^{-} \to \pi^{-}\pi^{+}\pi^{-}\omega v_{\tau}) = \mathcal{B}(\tau^{-} \to \pi^{-}\pi^{0}\pi^{0}\omega v_{\tau}) = (1.8 - 2.1) \times 10^{-4}$$

- B's of charged and neutral mode similar, but about factor 2 smaller than prediction

Search for "non-resonant" decay modes

•
$$\tau^- \rightarrow 2\pi^-\pi^+ 3\pi^0 v_{\tau}$$

- dominated by resonant decays
- no evidence for non-resonant decay

$$\mathcal{B}(\tau^- \to 2\pi^-\pi^+ 3\pi^0 \nu_{\tau}) < 0.55 \times 10^{-4} \ @ 90\% \text{ CL}$$

- $\tau^- \rightarrow 3\pi^- 2\pi^+ v_{\tau}$
 - dominated by non-resonant decays

$$\mathcal{B}(\tau^- \to 3\pi^- 2\pi^+ \nu_{\tau}) = (7.68 \pm 0.04 \pm 0.40) \times 10^{-4}$$

- $\tau^- \rightarrow 3\pi^- 2\pi^+ \pi^0 v_{\tau}$
 - dominated by resonant decays
 - excess at ~1.4 GeV could be from $\tau^- \to \omega$ ' $\pi^- v_{\tau}$. ω ' $\to \omega$ $\pi^- \pi^+$

$$\mathcal{B}(\tau^- \to 3\pi^- 2\pi^+ \pi^0 \nu_{\tau}) = (0.36 \pm 0.03 \pm 0.09) \times 10^{-4}$$

Search for \(\eta' \) in Tau decays

• Limits on first-class decays (90% CL)

$$\mathcal{B}(\tau^{-} \to K^{-} \eta'(958) \nu_{\tau}) < 0.24 \times 10^{-5}$$

$$\mathcal{B}(\tau^{-} \to \pi^{-} \pi^{0} \eta'(958) \nu_{\tau}) < 1.2 \times 10^{-5}$$

- Limit on second-class decay (90% CL)
 - BR would be zero in case of perfect isospin symmetry. Nussinov and Soffer predict B to be less than 0.14 ×10⁻⁵ [PRD 80, 033010 (2009)]

$$\mathcal{B}(\tau^- \to \pi^- \eta'(958) v_{\tau}) < 0.40 \times 10^{-5}$$

- Improvement over previous limits by BaBar [\$\mathcal{B}\$ < 0.72 \times 10^{-5}\$, PRD 77, 112002 (2008)] and CLEO [\$\mathcal{B}\$ < 8 \times 10^{-5}\$, PRL 79, 2406(1997)]
- Complements previous 2^{nd} -class current searches by BaBar in $\tau^- \to \pi^- \eta \ v_\tau$ [PRD 83, 032002 (2011)] and $\tau^- \to \pi^- \omega \ v_\tau$ [PRL 103, 041802 (2009)]

Search for 5-prong Tau decays with charged kaons

No signal decays observed (90% CL Limits):

$$\begin{split} \mathcal{B}(\tau^{-} \to K^{-} 2\pi^{-} 2\pi^{+} \nu_{\tau}) &< 2.4 \times 10^{-6} \\ \mathcal{B}(\tau^{-} \to K^{-} 2\pi^{-} 2\pi^{+} \pi^{0} \nu_{\tau}) &< 2 \times 10^{-6} \\ \mathcal{B}(\tau^{-} \to K^{+} 3\pi^{-} \pi^{+} \nu_{\tau}) &< 2.8 \times 10^{-6} \\ \mathcal{B}(\tau^{-} \to K^{+} 3\pi^{-} \pi^{+} \pi^{0} \nu_{\tau}) &< 0.8 \times 10^{-6} \\ \mathcal{B}(\tau^{-} \to K^{-} K^{+} 2\pi^{-} \pi^{+} \nu_{\tau}) &< 0.45 \times 10^{-6} \end{split}$$

40

Summary

- Still results coming out of BaBar's tau physics program more than four years after the end of data taking
- Presented today a recently published search for CP Violation in $\tau^- \to K_S \pi^- (\ge 0 \pi^0) \ v_\tau$ decays [Phys. Rev. D85, 031102 (2012), Erratum-ibid. D85, 099904 (2012)] and new preliminary results on 3-prong and 5-prong tau decays
- There are about five more BaBar papers on tau physics in the pipeline for publication in the near future