

Charm Decays at Belle

Outline

- $\bullet D_s^+ \longrightarrow \mu^+ \nu / \tau^+ \nu$ and f_{Ds}
- •Cabibbo-suppressed Ξ_c^0 Decays
- •Summary

M.-Z. Wang on behalf of the Belle Collaboration 2012/7/7

Motivation for studying $D_s^+ \!\!\!\!\! \to \!\!\! l^+ v$

Clean mode for SM calculation

$$\mathcal{B}(D_s^+ \to \ell^+ \nu_\ell) = \frac{G_F^2}{8\pi} f_{D_s}^2 |V_{cs}|^2 \tau_{D_s} M_{D_s} m_\ell^2 \left(1 - \frac{m_\ell^2}{M_{D_s}^2}\right)^2$$

- Determine f_{Ds} to compare with theoretical prediction
- Sensitive to new physics

Sophisticated analysis

Using the following process

$$e^+e^- \to c\overline{c} \to \overline{D}_{\rm tag}KX_{\rm frag}D_s^{*+}$$

Energetic charmed hadron as the tag

$$\overline{D}_{\mathrm{tag}} = \overline{D}{}^{0}$$
, D^{-} , $\Lambda_{c}^{-}p$, D^{*-} , $\overline{D}{}^{*0}$

Reconstructed by up to 6 dominant sub-decays

e.g.	D^0	B [%]
	$K^-\pi^+$	3.9
	$K^{-}\pi^{+}\pi^{0}$	13.9
	$K^{-}\pi^{+}\pi^{+}\pi^{-}$	8.1
	$K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	4.2
	$K_{S}^{0}\pi^{+}\pi^{-}$	2.9
	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	5.4
	Sum	38.4

Balance strangeness

$$K = K^{\pm}, K_S^0$$

Limited fragmentations

$$X_{\text{frag}} = \text{nothing}, \ \pi^{\pm}, \ \pi^{0}, \ \pi^{\pm}\pi^{\pm}, \ \pi^{\pm}\pi^{0}, \ \pi^{\pm}\pi^{\pm}\pi^{\pm}, \ \pi^{\pm}\pi^{\pm}\pi^{0}$$

ullet Identifying Signal by $D_s^* o D_s \gamma$

$$M_{
m miss}(\overline{D}_{
m tag}KX_{
m frag}\gamma)=\sqrt{|p_{e^+e^-}-p_{D_{
m tag}}-p_K-p_{X_{
m frag}}-p_\gamma|^2}$$

Determine total D_s yield

- $E_{\gamma} > 0.12$ GeV opposite to D_{tag}
- $P_{miss} > 2.8 \text{ GeV } @ \text{ CM}$
- One candidate per event based on γ quality

inclusive D_s with $X_{frag} = \pi$

• Sum of 7 X_{frag} modes $N_{D_s}^{incl} = 94400 \pm 1300(stat.) \pm 1400(syst.)$

Validation with $D_s^+ \rightarrow K^+ K^- \pi^+$

$$\mathcal{B}(\mathsf{D}_{\mathsf{s}}^+ \to \mathsf{K}^+\mathsf{K}^-\pi^+) = (5.06 \pm 0.15(\mathrm{stat.}) \pm 0.19(\mathrm{syst.}))\%$$

better precision than PDG average

$$\mathcal{B}^{\text{PDG}}(D_s^+ \to K^+ K^- \pi^+) = (5.49 \pm 0.27)\%$$

Validation with $D_s^+ \rightarrow K_s K^+$

Missing Mass Method

$$\mathcal{B}(\mathsf{D}_{\mathsf{s}}^{+} o \overline{\mathsf{K}}^{0}\mathsf{K}^{+}) = (2.84 \pm 0.12(\mathrm{stat.}) \pm 0.08(\mathrm{syst.}))\%$$

better precision than PDG average $\mathcal{B}^{\text{PDG}}(D_s^+ \to \overline{K}^0 K^+) = 2 \times \mathcal{B}^{\text{PDG}}(D_s^+ \to K_S^0 K^+) = (2.96 \pm 0.16)\%$

$$\mathcal{B}(\mathsf{D}_\mathsf{s}^+ \to \eta \pi^+) = (1.79 \pm 0.14(\mathrm{stat.}) \pm 0.05(\mathrm{syst.}))\%$$

$$\mathcal{B}^{\rm PDG}(D_s^+ \to \eta \pi^+) = (1.83 \pm 0.15)\%$$

$$D_s^+ \rightarrow \mu^+ \nu$$

Zero Missing Mass

$$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (0.528 \pm 0.028(\text{stat.}) \pm 0.019(\text{syst.}))\%$$

PDG value: (0.590±0.033)%

$$D_s^+ \rightarrow \tau^+ \nu$$

No Calorimeter activity

au decay mode	$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau}) \ [\times 10^{-2}]$
eνν	$5.37 \pm 0.33^{+0.35}_{-0.30}$
$\mu\nu\nu$	$5.88 \pm 0.37^{+0.34}_{-0.58}$
$\pi\nu$	$5.96 \pm 0.42^{+0.45}_{-0.39}$
Combination	$5.70 \pm 0.21^{+0.31}_{-0.30}$

PDG value: (5.43±0.31)%

Compare with f_{Ds} theoretical prediction

Belle Preliminary (913 fb⁻¹)

$D_s \to \ell \nu$	f _{Ds} [MeV]	
$\mu\nu$	$249.0 \pm 6.6 (\mathrm{stat.}) \pm 4.6 (\mathrm{syst.}) \pm 1.7 (\tau_{D_s})$	
au u	$261.9 \pm 4.9 (\mathrm{stat.}) \pm 7.0 (\mathrm{syst.}) \pm 1.8 (\tau_{D_s})$	
Combination	$255.0 \pm 4.2 (\text{stat.}) \pm 4.7 (\text{syst.}) \pm 1.8 (\tau_{D_s})$	

Search for Cabbibo –suppressed $\Xi_c^{\ 0} \to \Xi^- K^+$

external W emission

W exchange

- • $\Xi^- \rightarrow \Lambda \pi^-$
- •Long-lived Λ
- **Ξ** momentum pointing to IP
- **Ξ** sideband for background study

Observation of $\Xi_c^{\ 0} \rightarrow \Xi^{\scriptscriptstyle -} K^{\scriptscriptstyle +}$

Significance 8.3σ

314 ± 58 signal Feed-down from Cabbibo-favored $\Xi_c^{\ 0} \to \Xi^- \pi^+$

preliminary

mass peak 2470.6 \pm 1.5MeV within 1MeV PDG (Ξ_c^0)

$$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = (2.75 \pm 0.51 \pm 0.25) \times 10^{-2}$$

Search for Cabbibo -suppressed $\Xi_c^{\ 0} \to \Lambda \varphi$

internal W emission

- •Check Dalitz plot in Ξ_c^0 mass window
- •Reject $\Xi_c^{\ 0} \to \Omega^- K^+, \Omega^- \to \Lambda K^-$

Observation of $\Xi_c^{\ 0} \rightarrow \Lambda K^+K^-/\Lambda \varphi$

Significance 7.4σ

after ϕ selection \rightarrow

(background subtraction)

$$\frac{\mathcal{B}(\Xi_c^0 \to \Lambda \phi)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = (3.43 \pm 0.58 \pm 0.32) \times 10^{-2}$$
.

Summary

- Most precise measurement by a single experiment for $D_s^+ \rightarrow l^+ v$ up-to-date
- f_{Ds} agrees with theoretical predictions
- Super B factories can do a good job on f_{Ds}(f_D)
- First observation of Cabbibo-suppressed Ξ_c^0 decays
- Looking for understanding the decay dynamics of charmed baryon