Direct CP Violation in charm at Belle

July 2012 ICHEP Byeong Rok Ko (Korea University) for the Belle Collaboration

• CPV \leftarrow non-zero η in the CKM Matrix

1.Direct CPV : CPV in decay rate (this talk)

2.Indirect CPV : CPV induced by mixing (For mixing and indirect CPV results, see talk by Tao Peng)

Introduction (2) Direct CP Violation (DCPV)

$$\bullet A_{CP}^{D \to f} \equiv \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \propto \sin(\phi_1^W - \phi_2^W) \sin(\delta_1^{FSI} - \delta_2^{FSI})$$

 $,\Gamma(D \to f) = \left| A(D \to f)_1 + A(D \to f)_2 \right|^2 \text{ : partial decay width}$ $,A(D \to f)_1 = A_1 e^{i\phi_1^W} e^{i\delta_1^{FSI}}$

 $, A(D \to f)_2 = \mathbf{A}_2 e^{i\phi_2^W} e^{i\delta_2^{FSI}}$

Need two different decays with final state interactions
 ; not only different weak phases (φ^W₁ ≠ φ^W₂)
 but also different strong phases (δ^{FSI}₁ ≠ δ^{FSI}₂)

- Cabibbo Favored (CF) and Doubly Cabibbo Suppressed (DCS) decays governed by the 2x2 Cabibbo sub-matrix, which has no CP violating weak phase → No CPV in the SM
- Vub enters via a quantum loop in Singly Cabibbo Suppressed (SCS) decays → DCPV expected to be ~O(0.1%) in the SM

• DCPV of O(1%) in charm decays could signal new physics (NP)

Contents

Introduction (already given)

$$\circ A_{CP}^{D^+ \to K_S^0 \pi^+}$$

$$\circ A_{CP}^{D^0 \to h^+ h^-} \text{ and } \Delta A_{CP}, \ h \in \{K, \pi\}$$

These measurements use the full data sample collected by Belle during the last decade

$$D^+ \to K_S^0 \pi^+(1)$$
 (arXiv:1203.6409)

- Final state : coherent sum of CF ($D^+ \to \overline{K}^0 \pi^+$) and DCS ($D^+ \to \overline{K}^0 \pi^+$) decays, thus No SM CPV in these decays : $A_{CP}^{\Delta C}$
- CPV in K⁰ system : (-0.332 \pm 0.006)% ($A_{CP}^{\overline{K}^0}$)
- A_{CP} in the final state,

 $A_{CP}^{D^+ \to K_S^0 \pi^+} = A_{CP}^{\Delta C} + A_{CP}^{\overline{K}^0}$

- Significant CPV ≠ -0.332% could signal existence of new physics!!
- Unknown new phase from NP may appear in interference between the CF and DCS decays \rightarrow could generate O(1%) DCPV in $D^+ \rightarrow K_s^0 \pi^+$ decay
- Using the full data (1S, 2S, 3S, 4S, 5S, and near 4S), ~1.74 M reconstructed decays

$$D^+ \to K^0_S \pi^+(2)$$
 (arXiv:1203.6409)

• $A_{rec}^{D^+ \to K_S^0 \pi^+} = \frac{N_{rec}^+ - N_{rec}^-}{N_{rec}^+ + N_{rec}^-}, \quad N_{rec}^{\pm} = N_{rec}^{D^{\pm} \to K_S^0 \pi^{\pm}}, \quad K_S^0 \to \pi^+ \pi^-$

 $= A_{CP}^{D^{+}} \text{ (CPV from intrinsic } D^{+} \text{ decay, independent of any kinematic variables)}$ $+ A_{CP}^{\overline{K}^{0}} \text{ (CPV in } K^{0} \text{ system, depends on } K_{S}^{0} \text{ decay time (Grossman and Nir, JHEP 4 (2012), 2)}$ $+ A_{FB}^{D^{+}} \text{ (production asymmetry, odd function of } \cos \theta_{D^{+}}^{CMS} \text{)}$

+ $A_{\varepsilon}^{\pi^+}$ (π^{\pm} detection asymmetry, depends on ($p_{T\pi^+}^{lab}, \cos \theta_{\pi^+}^{lab}$)

: Correct using CPV free CF decays, $D^+ \to K^- \pi^+ \pi^+$ and $D^0 \to K^- \pi^+ \pi^0$)

+ A_D (Dilution asymmetry from different interactions between $\sigma(NK^0)$ and $\sigma(N\overline{K}^0)$ depends on $p_{K_s^0}^{lab}$: Correction needed according to PRD 84, 111501(2011))

• After correcting for $A_{\varepsilon}^{\pi^{+}}$ and A_{D} , $A_{rec}^{D^{+} \to K_{S}^{0} \pi_{corr}^{+}} = A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}} + A_{FB}^{D^{+}}$, $(A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}} = A_{CP}^{D^{+}} + A_{CP}^{\overline{K}^{0}})$ • Using the antisymmetry of $A_{FB}^{D^{+}}$ in $\cos \theta_{D^{+}}^{CMS}$, $A_{CP}^{D^{+} \to K_{S}^{0} \pi^{+}}$ extracted in $\cos \theta_{D^{+}}^{CMS}$ bins

$D^+ \rightarrow K_S^0 \pi^+$ (3) (PRL accepted)

• $A_{CP}^{D^+ \to K_S^0 \pi^+}$ = (-0.363±0.094±0.067)%

- Highest sensitivity in charm sector ever
- 3.2σ away from zero
- First evidence for CPV in charm decays from a single decay mode !
- Measured asymmetry consistent with CPV in K^o mixing

$D^+ \rightarrow K^0_S \pi^+$ (4) (PRL accepted)

- A_{CP} in K^o with correction for K_S^0 decay time acceptance, $A_{CP}^{\overline{K}^0} = (-0.332 \pm 0.006)\% x(1.040 \pm 0.005) = (-0.345 \pm 0.008)\%$
 - A_{CP} in intrinsic D⁺ decay : subtracting A_{CP} in K^o,
- $A_{CP}^{\Delta C} = (-0.018 \pm 0.094 \pm 0.068)\%$
 - New world average of $A_{CP}^{D^+ \to K_S^0 \pi^+}$

Experiment	$A_{CP}^{D^+ \to K_S^0 \pi^+} (\%)$	
FOCUS	$-1.6 \pm 1.5 \pm 0.9$	
CLEO	$-1.3 \pm 0.7 \pm 0.3$	
BaBar	$-0.44 \pm 0.13 \pm 0.10$	0
Belle	-0.363 ± 0.094 ± 0.067	
Average	-0.41 ± 0.09	2

4.6σ away from zero, Consistent with expected CPV in K^o system

$$A_{CP}^{D^0 \to h^+ h^-} \text{ and } \Delta A_{CP}, \ h \in \{K, \pi\} \quad (1)$$

- Both are SCS decays : Expect O(0.1%) DCPV in the SM
- Can also generate indirect CPV induced by mixing,
- But, A_{CP} difference between the two decays reveals ~DCPV only according to universality of indirect CPV in charm decays

•
$$A_{CP}^{D^0 \to K^+ K^-} = (-0.43 \pm 0.30 \pm 0.11)\%,$$

 $A_{CP}^{D^0 \to \pi^+ \pi^-} = (+0.43 \pm 0.52 \pm 0.12)\%,$
 $\Delta A_{CP} = (-0.86 \pm 0.60 \pm 0.07)\%$
• Belle with 540 fb⁻¹
(PLB 670, 190 (2008))

• Update A_{CP} in each decay mode with the full data sample Also report ΔA_{CP} between the two decays

$A_{CP}^{D^0 \to h^+ h^-} \text{ and } \Delta A_{CP}, \ h \in \{K, \pi\}$ (2)

- A_{CP} extracting similar to that for $D^+ \rightarrow K_S^0 \pi^+$ (the same method in previous measurement with 540 fb⁻¹)
- Unwanted asymmetries corrected properly

 slow pion detection : using CPV free CF decays, untagged (top left) and tagged D^o→K⁻π⁺ (top right);
 Integrated A^{π_s} = (+0.17 ± 0.07)%
 - $-A_{FB}$: using the antisymmetry

of A_{FB}^{D} in $\cos \theta_{D}^{CMS}$ -Subtract these unwanted asymmetries in ΔA_{CP} measurement Signal yields, purities $(\Delta M < 15 \text{ MeV}, \Delta q < 1 \text{ MeV})$

mode	yield	purity
KK	282k	97%
$\pi\pi$	123k	88%
$K\pi$	3.1M	99%
$K\pi$ untag.	14.7M	82%

12

- Each A_{CP} : consistent with our previous measurement,
- ΔA_{CP} : 2.1 σ away from zero
- Modest improvement in systematics,

Statistics of $D^{\circ} \rightarrow K^{-}\pi^{+}$ control samples

- : scale with integrated luminosity in two places
- Signal counting (choices of signal and sideband regions)
- : does not scale with integrated luminosity

$A_{CP}^{D^0 o h^+ h^-}$ a	and ΔA_{CP} , k	$n \in \{K, \pi\}$	(4)
Experiment	$A_{CP}^{D^0 o K^+ K^-}$ (%)	$A_{CP}^{D^0 o \pi^+ \pi^-}$ (%)	$\Delta A_{CP}(\%)$
BaBar PRL 100, 061803 (2008)	0.00±0.34±0.13	-0.24±0.52±0.22	N.A.
LHCb PRL 108,111602 (2012)	N.A.	N.A.	-0.82±0.21±0.11
CDF	-0.24±0.22±0.09 PRD 85,012009 (2012) with 6.0 fb ⁻¹	+0.22±0.24±0.11 PRD 85,012009 (2012) with 6.0 fb ⁻¹	-0.62±0.21±0.10 CHARM (2012) with 9.6 fb ⁻¹
Belle preliminary (2012)	-0.32±0.21±0.09	+0.55±0.36±0.09	-0.87±0.41±0.06

13

- $A_{CP}^{D^0 \to K^+ K^-}$ is the most sensitive and ΔA_{CP} is consistent with others
- Now, new world average from LHCb, CDF, and Belle ; $\Delta A_{CP} = (-0.74 \pm 0.15)\% \sim 4.9\sigma$ away from zero
- SM or BSM ? many speculations
- Need complementary measurements from other decays, for example, A_{CP} in $D^+ \to K_s^0 K^+$ and $D^+ \to \pi^+ \pi^0$ etc....

Summary

• Report the first evidence for CPV in the decay $D^+ \rightarrow K_S^0 \pi^+ A_{CP}^{D^+ \rightarrow K_S^0 \pi^+} = (-0.363 \pm 0.094 \pm 0.067)\%$ $\rightarrow 3.2\sigma$ away from zero

 A_{CP} in intrinsic charm decay after removing the K^o mixing contribution (also neglecting DCS decay contribution) $A_{CP}^{D^+ \to \overline{K}^0 \pi^+} = (-0.018 \pm 0.094 \pm 0.068)\%$

• Update $A_{CP}^{D^0 \to K^+ K^-}$ and $A_{CP}^{D^0 \to \pi^+ \pi^-}$, $A_{CP}^{D^0 \to K^+ K^-}$ is the most sensitive measurement to date Our ΔA_{CP} value consistent with LHCb and CDF results

$A_{CP}^{D^0 \to K^+ K^-}$	(-0.32±0.21±0.09)%
$A_{CP}^{D^0 \to \pi^+ \pi^-}$	(+0.55±0.36±0.09)%
ΔA_{CP}	(-0.87±0.41±0.06)%

Thanks to Marco Gersabeck from HFAG

HFAG March 2012 without the latest BaBar A_{Γ} No CPV hypothesis : 6.15x10⁻⁵ $\Delta a_{CP}(dir) = (-0.656 \pm 0.154)\%$ $a_{CP}(ind) = (-0.025 \pm 0.231)\%$ HFAG ICHEP 2012 with Belle preliminary, No CPV hypothesis : 1.98×10^{-5} $\Delta a_{CP}(dir) = (-0.678 \pm 0.147)\%$ $a_{CP}(ind) = (-0.027 \pm 0.163)\%$

Thank you for

your attention !!

Slow pion asymmetry correction

A_{ϵ}^{π} measurement

• Use two VERY large and CPV free resonance samples to measure $A_{\varepsilon}^{\pi^+}$

•
$$D^+ \to K^- \pi_h^+ \pi_l^+ (p_{T\pi_h^+}^{lab} > p_{T\pi_l^+}^{lab})$$
 and $D^0 \to K^- \pi^+ \pi^0$ samples :> 10 times of $D^+ \to K_S^0 \pi^+$
• $A_{rec}^{D^+ \to K^- \pi_h^+ \pi_l^+} = A_{\varepsilon}^{K^-} (p_{TK^-}^{lab}, \cos \theta_{K^-}^{lab}) + A_{\varepsilon}^{\pi_h^+} (p_{T\pi_h^+}^{lab}, \cos \theta_{\pi_h^+}^{lab}) + A_{\varepsilon}^{\pi_l^+} (p_{T\pi_l^+}^{lab}, \cos \theta_{\pi_l^+}^{lab}) + A_{FB}^{D^+} (\cos \theta_{D^+}^{CMS})$
• $A_{rec}^{D^0 \to K^- \pi^+ \pi^0} = A_{\varepsilon}^{K^-} (p_{TK^-}^{lab}, \cos \theta_{K^-}^{lab}) + A_{\varepsilon}^{\pi^+} (p_{T\pi_h^+}^{lab}, \cos \theta_{\pi^+}^{lab}) + A_{FB}^{D^0} (\cos \theta_{D^0}^{CMS})$

• Assume no CPV in Cabibbo favored decays

• Assume $A_{FB}^{D^0} = A_{FB}^{D^+}$ and we can measure $A_{\varepsilon}^{\pi_h^+}(p_{T\pi_h^+}^{lab}, \cos\theta_{\pi_h^+}^{lab})$ by subtracting $A_{rec}^{D^0 \to K^-\pi^+\pi^0}$ from $A_{rec}^{D^+ \to K^-\pi_h^+\pi_l^+}$ in 5 - D $A_{rec}^{D^+ \to K^-\pi_h^+\pi_l^+} - A_{rec}^{D^0 \to K^-\pi^+\pi^0} =$ $A_{\varepsilon}^{K^-}(p_{TK^-}^{lab}, \cos\theta_{K^-}^{lab}) + A_{\varepsilon}^{\pi_h^+}(p_{T\pi_h^+}^{lab}, \cos\theta_{\pi_h^+}^{lab}) + A_{\varepsilon}^{\pi_l^+}(p_{T\pi_l^+}^{lab}, \cos\theta_{\pi_l^+}^{lab}) + A_{FB}^{D^+}(\cos\theta_{D^+}^{CMS}) A_{\varepsilon}^{K^-}(p_{TK^-}^{lab}, \cos\theta_{K^-}^{lab}) - A_{\varepsilon}^{\pi^+}(p_{T\pi_h^+}^{lab}, \cos\theta_{\pi^+}^{lab}) - A_{FB}^{D^0}(\cos\theta_{D^0}^{CMS}) = A_{\varepsilon}^{\pi_h^+}(p_{T\pi_h^+}^{lab}, \cos\theta_{\pi_h^+}^{lab})$

• Actually correction procedure is quite nontrivial

Using the antisymmetry of
$$A_{FB}^{D}(\cos\theta_{D}^{CMS})$$

 $*A_{CP}^{D \to K_{S}^{0}X^{+}} = \left\{ A_{rec}^{D \to K_{S}^{0}X_{corr}^{+}}(\cos\theta_{D}^{CMS}) + A_{rec}^{D \to K_{S}^{0}X_{corr}^{+}}(-\cos\theta_{D}^{CMS}) \right\} / 2$
 $*A_{FB}^{D} = \left\{ A_{rec}^{D \to K_{S}^{0}X_{corr}^{+}}(\cos\theta_{D}^{CMS}) - A_{rec}^{D \to K_{S}^{0}X_{corr}^{+}}(-\cos\theta_{D}^{CMS}) \right\} / 2$

Asymmetry due to K⁰-K⁰bar material effects (we call it A_D)

- $\sigma(K^+N) \neq \sigma(K^-N)$
 - dot : proton, line : deuteron
- Assuming isospin symmetry
 σ(K^oN) ≠ σ(K^obarN)
 → This is the origin of the effect

- A_D was naively calculated and assigned as systematics in Belle PRL 104, 181602 (2010)
- Getting more data, this became one of the dominant systematics for Acp(D⁺→K^o_Sπ⁺)
- A few colleagues and myself went through this effect in detail,

the result is available in PRD 84, 111501 (2011)

Experiment-dependent SM expectation of Acp due to K⁰_S

• A_{CP} in the final states with K_S^0 , $D \to K_S^0 X$, $K_S^0 \to \pi^+ \pi^-$

$$A_{CP}^{D \to K_S^0 X} \equiv \frac{\Gamma(D \to K_S^0 X) \Gamma(K_S^0 \to \pi^+ \pi^-) - \Gamma(\overline{D} \to K_S^0 \overline{X}) \Gamma(K_S^0 \to \pi^+ \pi^-)}{\Gamma(D \to K_S^0 X) \Gamma(K_S^0 \to \pi^+ \pi^-) + \Gamma(\overline{D} \to K_S^0 \overline{X}) \Gamma(K_S^0 \to \pi^+ \pi^-)}$$
$$= A_{CP}^D + A_{CP}^{K_S^0}$$

- $A_{CP}^{K_s^0}$: A_{CP} due to K_s^0 is known to be $(-0.332 \pm 0.006)\%$,
- Grossman and Nir (arXiv:1110.3790) pointed out

 $A_{CP}^{K_{S}^{0}}$ should be estimated with experimental dependency

$$\therefore A_{CP}^{K_{S}^{0}} \equiv \frac{\int_{0}^{\infty} \Gamma_{\pi\pi}(t) - \overline{\Gamma}_{\pi\pi}(t) dt}{\int_{0}^{\infty} \Gamma_{\pi\pi}(t) + \overline{\Gamma}_{\pi\pi}(t) dt}, \ t : K_{S}^{0} \text{ decay time}$$

Figure 7: Polar angle distribution of the reconstructed $D^0 + \overline{D}^0$ signal events (in lab) for (a) the tagged $K\pi$ sample, (b) for the non-tagged $K\pi$ sample, and corresponding asymmetries (c) for tagged, (d) for non-tagged sample. Vertical lines indicate the cut introduced to reduce systematics.