

Spin correlation and W helicity in top events with CMS

Haryo Sumowidagdo

on behalf of CMS Collaboration ICHEP 2012 Melbourne, July 4-11, 2012

Motivation

- > Top quarks have a very short lifetime.
 - > Spin information of the top quark is transferred into its decay products.
 - > W helicity: The helicity fraction of W bosons from top decays is sensitive to new physics Wtb vertex.
 - Spin correlation: Assuming Standard Model (SM) decay of top quarks, can infer the (non)-existence of spin correlation in ttbar pair -> Probing new physics at the production.

The CMS Detector

W Helicity

 SM predicts accurately the transverse (F₀), left-longitudinal (F_L) and right-longitudinal (F_R) polarization of W boson from top decay

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8}\left(1-\cos\theta^*\right)^2 F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2 F_R + \frac{3}{4}\sin^2\theta^* F_0$$

Figure 2. Spins in the W^+ rest frame. The W's helicity from the top frame is preserved as the spin in the right-hand direction. The helicities of the W's decay products are fixed by the weak force and constitute a +1 spin projection in the direction of the t^+ , at polar angle α from the original spin axis.

- Measurement is done in the muon+jets channel with
 2.2 fb⁻¹ of data:
 - The selection follows lepton +jets cross-section with looser muon isolation to reduce the bias at cos θ* near -1.
 - The complete event kinematics is reconstructed with a kinematic fit.

Monte Carlo Reweighting

- Any helicity configuration can be generated by reweighting on eventby-event basis.
 - > At the generator level for a specific helicity configuration, it is assumed the distribution is given by

$$\rho(\cos\theta_{gen}^*) \equiv \frac{1}{N} \frac{dN}{d\cos\theta_{gen}^*} = \frac{3}{8} F_L (1 - \cos\theta_{gen}^*)^2 + \frac{3}{4} F_0 \sin^2\theta_{gen}^* + \frac{3}{8} F_R (1 + \cos\theta_{gen}^*)^2$$

> The weight applied for each event generated with SM fractions thus

$$W(\cos\theta_{gen}^{*};\vec{F}) \equiv \frac{\rho(\cos\theta_{gen}^{*})}{\rho^{SM}(\cos\theta_{gen}^{*})} = \frac{\frac{3}{8}F_{L}(1-\cos\theta_{gen}^{*})^{2} + \frac{3}{4}F_{0}\sin^{2}\theta_{gen}^{*} + \frac{3}{8}F_{R}(1+\cos\theta_{gen}^{*})^{2}}{\frac{3}{8}F_{L}^{SM}(1-\cos\theta_{gen}^{*})^{2} + \frac{3}{4}F_{0}^{SM}\sin^{2}\theta_{gen}^{*} + \frac{3}{8}F_{R}^{SM}(1+\cos\theta_{gen}^{*})^{2}}$$

- > Reconstruction effects and efficiencies are automatically taken into account.
- Fit parameter is $\mathbf{F} = (\mathbf{F}_0, \mathbf{F}_L, \mathbf{F}_R)$

Helicity fitting

- > Simultaneously fit F_0 , F_L and f_{top} (fraction of ttbar events in the data sample)
 - > Extract the F_R by constraining the sum of F to be 1.
- > Define a likelihood function

$$\mathcal{L}(\vec{F}) = \prod_{bin \ i} \frac{N_{MC}(i;\vec{F}) \ N_{data}(i)}{(N_{data}(i))!} \ \exp\left(-N_{MC}(i;\vec{F})\right),$$

where the various components are defined as:

$$\begin{split} \mathbf{N}_{\mathrm{MC}}(i,\vec{F}) &= \mathbf{N}_{\mathrm{BKG}}(i) + \mathbf{N}_{\mathrm{t\bar{t}}}(i;\vec{F}) \\ \mathbf{N}_{\mathrm{t\bar{t}}}(i;\vec{F}) &= \mathcal{F}_{\mathrm{t\bar{t}}} \left[\sum_{\mathrm{t\bar{t} \ events, \ bin \ }i} W(\cos\theta_{gen}^{*};\vec{F}) \right] \\ \mathbf{N}_{\mathrm{BKG}}(i) &= \mathbf{N}_{\mathrm{W+jets}}(i) + \mathbf{N}_{\mathrm{Drell-Yan+jets}}(i) + \mathbf{N}_{\mathrm{QCD}}(i) + \mathbf{N}_{\mathrm{Single-Top}}(i) \end{split}$$

> With MC sample size much larger than data sample, statistical uncertainty is dominated by data.

Results

Fitting simultaneously F₀, F_L and f_{top} yields:

and

$$F_0 = 0.567 \pm 0.074(\text{stat.}) \pm 0.047(\text{syst.})$$

$$F_L = 0.393 \pm 0.045(\text{stat.}) \pm 0.029(\text{syst.})$$

$$F_R = 0.040 \pm 0.035 (\text{stat.}) \pm 0.044(\text{syst.})$$

• Fitting F_0 and f_{top} with $F_R = 0$.

 $F_0 = 0.643 \pm 0.034 (\text{stat.}) \pm 0.050 (\text{syst.})$

Systematic uncertainties on W helicity

Systematic check	Fitting F_0 , F_L and $\mathcal{F}_{t\bar{t}}$		Fitting F_0 and $\mathcal{F}_{t\bar{t}}$
	3D fit		2D fit
	\pm Uncertainty F_0	\pm Uncertainty F_L	\pm Uncertainty F_0
b-Tag $\left(\frac{\epsilon_{b-tag}^{DATA}}{\epsilon_{b-tag}^{MC}}\right)$	0.007	0.009	0.010
QCD Norm	0.007	0.002	0.003
Single-t Norm	0.003	0.007	0.010
DY Norm	0.018	0.003	0.010
W+jet Norm	0.020	0.006	0.029
muon (no $\frac{\epsilon_{\mu}^{DATA}}{\epsilon_{\mu}^{MC}}$)	0.002	0.003	0.003
PDF	0.001	0.001	0.002
JES scale	0.018	0.011	0.005
top Q ² scale	0.014	0.007	0.021
DY,W Q^2 scale	0.022	0.003	0.014
top mass ($\pm 3 \text{ GeV}/c^2$)	0.019	0.021	0.025

Table 2: Summary of the systematic uncertainties, on the **3D** fit analysis, fitting F_0 , F_L and $\mathcal{F}_{t\bar{t}}$ (columns 2-3) and on the **2D** fit analysis, fitting F_0 and $\mathcal{F}_{t\bar{t}}$ only (column 4). The numbers given correspond to the absolute uncertainty with respect to the central analysis: ($F^{central} - F^{check}$).

Limits on anomalous couplings

- Following notation of J.A. Aguilar-Saavedra (NPB 812, 181 and NPB 821, 215) with Re(g_L) and Re(g_R) as free parameters of the fit.
- > Regions disfavored by CMS single top measurement is excluded.

UCR

Spin correlation in top quark-antiquark

 Given an arbitrary spin quantization axis, the spin correlation coefficient is defined as:

$$A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\downarrow\uparrow) - N(\uparrow\downarrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\downarrow\uparrow) + N(\uparrow\downarrow)}$$

- > It is not a parameter in the Lagrangian.
 - > Depends on top quark mass, colliding initial state, collisions energy, production and decay mechanism of the top quark.
- CMS performs two measurements in the dilepton channels with full 2011 dataset of 5.0 fb⁻¹, CMS-PAS-TOP-12-004.
 - Δφ measurement, using the absolute difference in azimuthal angle between the two charged leptons. Follows suggestion from Mahlon & Parke (PRD 81, 074024)
 - > Direct asymmetries measurement using full event reconstruction. Look specifically into higher mass region per suggestion of Krohn et al (PRD 84, 074034). Related to CMS Analysis CMS-TOP-12-016.
 - Selection and background estimation is identical with ttbar cross-section and mass measurements in the dilepton channels (ee, μμ,eμ)

$\Delta \phi_{I+I-}$ analysis

- > Fit the $\Delta \phi_{I+I-}$ between the two charged leptons. No full event kinematics reconstruction is necessary.
- > Fit templates:
 - > MC@NLO ttbar with and without spin correlations.
 - > Background subtraction: combination of MC shape and data-driven yield estimation.
- > Fit parameters: Number of ttbar events in each individual channel ee, $\mu\mu$, $e\mu$ and an overall fraction of ttbar with spin correlation.
- Calibration and linearity check using pseudo-experiment confirm the validity of fit procedure.
 - > Considered fraction ranges from -1 to 2.
 - Width of the pull distribution is within 10% of unity.

Fit results

> The fitted fraction of ttbar with spin correlation, f, is found to be

f = 0.74 ± 0.08 (stat) ± 0.24 (syst), correspond to A = 0.24 ± 0.02 (stat) ± 0.08 (syst). (Expected f = 1.0, A = 0.31)

Spin correlations and W helicity in top events with CMS - ICHEP 2012

Systematics uncertainties on $\Delta \phi_{I+I-}$

uncertainty Δf	absolute	relative (%)
statistic uncertainty	0.08	11%
MC stat uncertainty	0.07	9%
	experimental	
Lepton selection	0.01	1%
Lepton energy scale	0.01	1%
JES/JER	0.02	3%
all backgrounds	0.07	9%
PU	0.02	3%
b-tagging	0.01	1%
	tī modelling	
FastSim vs FullSim	0.06	8%
Fact. and renorm. scales	0.15	20%
au decay	0.12	16%
top mass	0.02	3%
PDF	0.07	9%

Table 1: Uncertainty on the fraction of events with spin correlation Δf , as predicted by the fit.

Direct measurement of the asymmetry

 Using fully reconstructed events, directly measure the two following asymmetry coefficients

$$A_{\Delta\phi} = \frac{N(\Delta\phi_{l+l^-} < \pi/2) - N(\Delta\phi_{l+l^-} > \pi/2)}{N(\Delta\phi_{l+l^-} < \pi/2) + N(\Delta\phi_{l+l^-} > \pi/2)}$$

$$A_{c1c2} = \frac{N(\cos(\theta_l^+) \times \cos(\theta_l^-) > 0) - N(\cos(\theta_l^+) \times \cos(\theta_l^-) < 0)}{N(\cos(\theta_l^+) \times \cos(\theta_l^-) > 0) + N(\cos(\theta_l^+) \times \cos(\theta_l^-) < 0)}$$

- The analytical matrix weighting technique (AMWT) from CMS top quark mass measurement in the dilepton channels is used.
- > Reconstructed asymmetries are unfolded to the parton level.
 - > Detailed discussion of unfolding is in CMS-TOP-12-016.
 - > First look at Mttbar > 450 GeV before unfolding.
 - > Unfolding then is done at the inclusive sample (without Mttbar cut to avoid bias).

Asymmetries at Mttbar > 450 GeV

 No deviation from SM prediction observed at high ttbar invariant mass in both distributions.

 $A_{\delta\rho I+I-} = -0.378 \pm 0.019$ (stat) and $A_{c1c2} = -0.019 \pm 0.016$ (stat).

Unfolding (CMS-TOP-12-016)

- Use a regularized unfolding algorithm based on Singular Value Decomposition, implemented in RooUnfold.
- Verified that the unfolding procedure can correctly unfold distributions with different levels of asymmetry.

Figure 3: Acceptance matrix bins (left) and smearing effects due to the uncertainties of top reconstruction (right).

Unfolded asymmetries results

> The unfolded asymmetries results are measured to be

 $A_{\delta\rho I+I-} = -0.097 \pm 0.015$ (stat) ± 0.036 (syst), and $A_{c1c2} = 0.015 \pm 0.037$ (stat) ± 0.055 (syst).

Spin correlations and W helicity in top events with CMS - ICHEP 2012

Systematic uncertainties on asymmetries

systematic	$A_{\Delta\phi}$	A_{c1c2}
statistic uncertainty	0.015	0.037
MC stat uncertainty	0.0004	0.0004
	experimental	
Lepton SF	0.0009	0.0002
Lepton energy scale	0.0009	0.0002
JES/JER	0.002	0.016
all backgrounds	0.002	0.010
PU	0.003	0.003
<i>b</i> -tagging	0.001	0.002
	t ī modelling	
Fact. and renorm. scales	0.030	0.051
au decay	0.016	0.002
top mass	0.002	0.005
PDF	0.009	0.001

Table 3: Uncertainty on the unfolded values of $A_{\Delta\phi}$ and A_{c1c2}

Top polarization (CMS-TOP-12-016)

> First direct measurement of θ_1^+ , the direction of the positively charged lepton in the ttbar rest frame using the helicity spin basis.

Figure 4: Background-subtracted and unfolded $\cos(\theta_l^+)$ distribution. The error bars represent statistical uncertainties only, while the systematic uncertainty band is represented by the hatched area. Note that the bin values are correlated due to the unfolding.

Summary

- LHC has become a top quark factory that enables precision measurements of top quark couplings and asymmetries.
- CMS first measurement of W helicity in top decays is already competitive with Tevatron's results.

 $F_R = 0.040 \pm 0.035 \text{ (stat.)} \pm 0.044 \text{ (syst.)}$

- Spin correlation in ttbar events is investigated in the dilepton channel:
 - > Fraction of ttbar with spin correlation is measured to be:

f = 0.74 ± 0.08 (stat) ± 0.24 (syst), correspond to A = 0.24 ± 0.02 (stat) ± 0.08 (syst).

> No deviation observed on the asymmetries at high Mttbar region.

 $A_{\delta\rho I+I-} = -0.378 \pm 0.019$ (stat) and $A_{c1c2} = -0.019 \pm 0.016$ (stat).